Skip to main content
Log in

Chemically Robust Superhydrophobic Poly(vinylidene fluoride) Films with Grafting Crosslinkable Fluorinated Silane

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

A superhydrophobic surface with excellent chemical stability was fabricated using the spraying method, one of the most efficient technologies for producing large-area coatings at low cost. Poly(vinylidene fluoride) (PVDF) was used as a hydrophobic polymer material, and heptadecafluoro-1,1,2,2,-tetra-hydrodecyl)trichlorosilane (FTS), which reacts with moisture during curing, was used to improve the water repellency and durability. Spray coating of PVDF alone yielded PVDF nanostructures described by the Cassie-Baxter model. The water contact angle of a water droplet on this surface, however, was 128°, indicating that the surface was not superhydrophobic. On the other hand, spray-coating a mixed PVDF-FTS solution provided a complex and homogeneous nanostructured surface with excellent water repellency and a contact angle of up to 159°. Immersion of the PVDF-only film for 20 min in N,N-dimethylformamide (DMF), a good solvent for PVDF, led to complete dissolution of the film. By contrast, the PVDF-FTS film maintained its superhydrophobicity with a water contact angle of 151° after 20 min of immersion in DMF, and still exhibited a high contact angle of 142° after 1 h. The PVDF-FTS film developed in the present work should enable the production of large-area superhydrophobic coatings at low cost using a simple spray process. Moreover, the PVDF-FTS film displayed excellent stability against solvents, thus increasing its suitability for robust superhydrophobic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.-L. Min, B. Jiang, and P. Jiang, Adv. Mater., 20, 3914 (2008).

    Article  CAS  Google Scholar 

  2. K. Liu, X. Yao, and L. Jiang, Chem. Soc. Rev., 39, 3240 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. J. Li, L. Yan, Q. Ouyang, F. Zha, Z. Jing, X. Li, and Z. Lei, Chem. Eng. J., 246, 238 (2014).

    Article  CAS  Google Scholar 

  4. Y. Wang, J. Xue, Q. Wang, Q. Chen, and J. Ding, ACS Appl. Mater. Interfaces, 5, 3370 (2013).

    Article  CAS  PubMed  Google Scholar 

  5. S. Zhang, F. Lu, L. Tao, N. Liu, C. Gao, L. Feng, and Y. Wei, ACS Appl. Mater. Interfaces, 5, 11971 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. X. Feng and L. Jiang, Adv. Mater., 18, 3063 (2006).

    Article  CAS  Google Scholar 

  7. J. Ou, W. Hu, S. Liu, M. Xue, F. Wang, and W. Li, ACS Appl. Mater. Interfaces, 5, 3101 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. H. Ogihara, J. Xie, J. Okagaki, and T. Saji, Langmuir, 28, 4605 (2012).

    Article  CAS  PubMed  Google Scholar 

  9. Z. Guo, W. Liu, and B.-L. Su, J. Colloid Interface Sci., 353, 335 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. G. Mao-Gang, X. Xiao-Liang, Y. Zhou, L. Yan-Song, and L. Ling, Chin. Phys. B, 19, 056701 (2010).

    Article  Google Scholar 

  11. D.-H. Kim, Y. Kim, B. M. Kim, J. S. Ko, C.-R. Cho, and J.-M. Kim, J. Micromech. Microeng., 21, 045003 (2011).

    Article  CAS  Google Scholar 

  12. T.-Y. Kim, B. Ingmar, K. Bewilogua, K. H. Oh, K.-R. Lee, Chem. Phys. Lett., 436, 199 (2007).

    Article  CAS  Google Scholar 

  13. W. Ming, D. Wu, R. V. Benthem, and G. D. With, Nano Lett., 5, 2298 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. D. Kim, J. Kim, H. C. Park, K.-H. Lee, and W. Hwang, J. Micromech. Microeng., 18, 015019 (2008).

    Article  CAS  Google Scholar 

  15. R. N. Wenzel, Ind. Eng. Chem., 28, 988 (1936).

    Article  CAS  Google Scholar 

  16. L. Cao, H.-H. Hu, and D. Gao, Langmuir, 23, 4310 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. A. B. D. Cassie and S. Baxter, Trans. Faraday Soc., 40, 546 (1944).

    Article  CAS  Google Scholar 

  18. A. Marmur and E. Bittoun, Langmuir, 25, 1277 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. M. Ma, M. Gupta, Z. Li, L. Zhai, K. K. Gleason, R. E. Cohen, M. F. Rubner, and G. C. Rutledge, Adv. Mater., 19, 255 (2007).

    Article  CAS  Google Scholar 

  20. D. Han and A. J. Steckl, Langmuir, 25, 9454 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. Y. Zhao, Z. Xu, X. Wang, and T. Lin, Appl. Surface Sci., 286, 364 (2013).

    Article  CAS  Google Scholar 

  22. K. Manabe, K. Manabe, S. Nishizawa, K.-H. Kyung, and S. Shiratori, ACS Appl. Mater. Interfaces, 6, 13985 (2014).

    Article  CAS  PubMed  Google Scholar 

  23. Y. H. Sung, Y. D. Kim, H.-J. Choi, R. Shin, S. Kang, and H. Lee, Appl. Surface Sci., 349, 169 (2015).

    Article  CAS  Google Scholar 

  24. T. Li, M. Paliy, X. Wang, B. Kobe, W.-M. Lau, and J. Yang, ACS Appl. Mater. Interfaces, 7, 10988 (2015).

    Article  CAS  PubMed  Google Scholar 

  25. N. Kawasegi, N. Morita, S. Yamada, N. Takano, T. Oyama, S. Momota, J. Taniguchi, and I. Miyamoto, Appl. Surface Sci., 253, 3284 (2007).

    Article  CAS  Google Scholar 

  26. N. Miljkovic, R. Enright, and E. N. Wang, ACS Nano, 6, 1776 (2012).

    Article  CAS  PubMed  Google Scholar 

  27. N. A. Azarova, J. W. Owen, C. A. McLellan, M. A. Grimminger, Eric. K. Chapman, J. E. Anthony, and O. D. Jurchescu, Org. Electron., 11, 1960 (2010).

    Article  CAS  Google Scholar 

  28. D. Vak, S.-S. Kim, J. Jo, S.-H. Oh, S.-I. Na, J. Kim, and D.-Y. Kim, Appl. Phys. Lett., 91, 081 (2007).

    Article  CAS  Google Scholar 

  29. Y. Zhang, D. Ge, and S. Yang, J. Colloid Interface Sci., 423, 101 (2014).

    Article  CAS  PubMed  Google Scholar 

  30. J. Li, R. Wu, Z. Jing, L. Yan, F. Zhan, and Z. Lei, Langmuir, 31, 10702 (2015).

    Article  CAS  PubMed  Google Scholar 

  31. Y. Li, S. Chen, M. Wu, and J. Sun, Adv. Mater., 26, 3344 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. P. A. Levkin, F. Svec, and J. M. J. Fréchet, Adv. Funct. Mater., 19, 1993 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. D. L. Gilmore, R. C. Dykhuizen, R. A. Neiser, T. J. Roemer, and M. F. Smith, J. Therm. Spray Technol., 8, 576 (1999).

    Article  CAS  Google Scholar 

  34. T. Stoltenhoff, H. Kreye, and H. J. Richter, J. Therm. Spray Technol., 11, 542 (2002).

    Article  CAS  Google Scholar 

  35. L. Xu, R. G. Karunakaran, J. Guo, and S. Yang, ACS Appl. Mater. Interfaces, 4, 1118 (2012).

    Article  CAS  PubMed  Google Scholar 

  36. M. G. Hankins, P. J. Resnick, P. J. Clews, T. M. Mayer, D. R. Wheeler, D. M. Tanner, and R. A. Plass, Proc. SPIE, 4980, 238.

  37. R. W. P. Fairbank and M. J. Wirth, J. Chromatogr. A, 830, 285 (1999).

    Article  CAS  Google Scholar 

  38. S. Park, K.-S. Lee, G. Bozoklu, W. Cal, S. T. Nguyen, and R. S. Ruoff, ACS Nano, 2, 572 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. P. Xu, H. Tang, S. Li, J. Ren, E. V. Kirk, W. J. Murdoch, M. Radosz, and Y. Shen, Biomacromolecules, 5, 1736 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hwa Sung Lee.

Additional information

Acknowledgment: This work was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2016R1D1A1B03936094).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeong, H., Baek, S., Han, S. et al. Chemically Robust Superhydrophobic Poly(vinylidene fluoride) Films with Grafting Crosslinkable Fluorinated Silane. Macromol. Res. 26, 493–499 (2018). https://doi.org/10.1007/s13233-018-6072-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-018-6072-6

Keywords

Navigation