Skip to main content
Log in

Flexible Modeling of Variable Asymmetries in Cross-Covariance Functions for Multivariate Random Fields

  • Published:
Journal of Agricultural, Biological and Environmental Statistics Aims and scope Submit manuscript

Abstract

The geostatistical analysis of multivariate spatial data for inference as well as joint predictions (co-kriging) ordinarily relies on modeling of the marginal and cross-covariance functions. While the former quantifies the spatial dependence within variables, the latter quantifies the spatial dependence across distinct variables. The marginal covariance functions are always symmetric; however, the cross-covariance functions often exhibit asymmetries in the real data. Asymmetric cross-covariance implies change in the value of cross-covariance for interchanged locations on fixed order of variables. Such change of cross-covariance values is often caused due to the spatial delay in effect of the response of one variable on another variable. These spatial delays are common in environmental processes, especially when dynamic phenomena such as prevailing wind and ocean currents are involved. Here, we propose a novel approach to introduce flexible asymmetries in the cross-covariances of stationary multivariate covariance functions. The proposed approach involves modeling the phase component of the constrained cross-spectral features to allow for asymmetric cross-covariances. We show the capability of our proposed model to recover the cross-dependence structure and improve spatial predictions against traditionally used models through multiple simulation studies. Additionally, we illustrate our approach on a real trivariate dataset of particulate matter concentration (\({\hbox {PM}}_{2.5}\)), wind speed and relative humidity. The real data example shows that our approach outperforms the traditionally used models, in terms of model fit and spatial predictions.

Supplementary materials accompanying this paper appear on-line.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Apanasovich, T. V. and Genton, M. G. (2010). Cross-covariance functions for multivariate random fields based on latent dimensions. Biometrika 97, 15–30.

    Article  MathSciNet  Google Scholar 

  • Apanasovich, T. V., Genton, M. G., and Sun, Y. (2012). A valid Matérn class of cross-covariance functions for multivariate random fields with any number of components. Journal of the American Statistical Association 107, 180–193.

    Article  MathSciNet  Google Scholar 

  • Brown, P. J., Le, N. D., and Zidek, J. V. (1994). Multivariate spatial interpolation and exposure to air pollutants. Canadian Journal of Statistics 22, 489–509.

    Article  MathSciNet  Google Scholar 

  • Chang, H. H., Reich, B. J., and Miranda, M. L. (2011). Time-to-event analysis of fine particle air pollution and preterm birth: Results from north carolina, 2001–2005. American Journal of Epidemiology 175, 91–98.

    Article  Google Scholar 

  • Christensen, W. and Amemiya, Y. (2001). Generalized shifted-factor analysis method for multivariate geo-referenced data. Mathematical Geology 33, 801–824.

    Article  MathSciNet  Google Scholar 

  • Cramér, H. (1940). On the theory of stationary random processes. Annals of Mathematics 41, 215–230.

    Article  MathSciNet  Google Scholar 

  • Cressie, N. (1993). Statistics for Spatial Data. Wiley, New york.

    Book  Google Scholar 

  • Cressie, N. and Zammit-Mangion, A. (2016). Multivariate spatial covariance models: a conditional approach. Biometrika 103, 915–935.

    Article  MathSciNet  Google Scholar 

  • Dawson, J. P., Adams, P. J., and Pandis, S. N. (2007). Sensitivity of PM\(_{2.5}\) to climate in the Eastern US: a modeling case study. Atmospheric Chemistry and Physics 7, 4295–4309.

    Article  Google Scholar 

  • Gaspari, G. and Cohn, S. E. (1999). Construction of correlation functions in two and three dimensions. Quarterly Journal of the Royal Meteorological Society 125, 723–757.

    Article  Google Scholar 

  • Gaspari, G., Cohn, S. E., Guo, J., and Pawson, S. (2006). Construction and application of covariance functions with variable length-fields. Quarterly Journal of the Royal Meteorological Society 132, 1815–1838.

    Article  Google Scholar 

  • Gelfand, A., Diggle, P., Guttorp, P., and Fuentes, M. (2010). Handbook of Spatial Statistics. Chapman & Hall/CRC Handbooks of Modern Statistical Methods. CRC Press.

  • Genton, M. G. and Kleiber, W. (2015). Cross-covariance functions for multivariate geostatistics. Statistical Science 30, 147–163.

    Article  MathSciNet  Google Scholar 

  • Gneiting, T., Kleiber, W., and Schlather, M. (2010). Matérn cross-covariance functions for multivariate random fields. Journal of the American Statistical Association 105, 1167–1177.

    Article  MathSciNet  Google Scholar 

  • Gneiting, T. and Raftery, A. E. (2007). Strictly proper scoring rules, prediction, and estimation. Journal of the American Statistical Association 102, 359–378.

    Article  MathSciNet  Google Scholar 

  • Goulard, M. and Voltz, M. (1992). Linear coregionalization model: Tools for estimation and choice of cross-variogram matrix. Mathematical Geology 24, 269–286.

    Article  Google Scholar 

  • Guinness, J., Fuentes, M., Hesterberg, D., and Polizzotto, M. (2014). Multivariate spatial modeling of conditional dependence in microscale soil elemental composition data. Spatial Statistics 9, 93 – 108. Revealing Intricacies in Spatial and Spatio-Temporal Data: Papers from the Spatial Statistics 2013 Conference.

    Article  MathSciNet  Google Scholar 

  • Helterbrand, J. D. and Cressie, N. (1994). Universal cokriging under intrinsic coregionalization. Mathematical Geology 26, 205–226.

    Article  MathSciNet  Google Scholar 

  • Horn, R. A. and Johnson, C. R. (2013). Matrix analysis. Cambridge University Press, Cambridge, 2nd edition.

    MATH  Google Scholar 

  • Jacob, D. J. and Winner, D. A. (2009). Effect of climate change on air quality. Atmospheric Environment 43, 51 – 63.

    Article  Google Scholar 

  • Karl, T. R. and Koss, W. J. (1984). Regional and national monthly, seasonal, and annual temperature weighted by area, 1895-1983. National Climatic Data Center, Asheville, N.C.

    Google Scholar 

  • Kleiber, W. (2017). Coherence for multivariate random fields. Statistica Sinica 27, 1675–1697.

    MathSciNet  MATH  Google Scholar 

  • Li, B., Genton, M., and Sherman, M. (2008). Testing the covariance structure of multivariate random fields. Biometrika 95, 813–829.

    Article  MathSciNet  Google Scholar 

  • Li, B. and Zhang, H. (2011). An approach to modeling asymmetric multivariate spatial covariance structures. Journal of Multivariate Analysis 102, 1445 – 1453.

    Article  MathSciNet  Google Scholar 

  • Litvinenko, A., Kriemann, R., Genton, M. G., Sun, Y., and Keyes, D. E. (2019). Hlibcov: Parallel hierarchical matrix approximation of large covariance matrices and likelihoods with applications in parameter identification. MethodsX .

  • Majumdar, A. and Gelfand, A. E. (2007). Multivariate spatial modeling for geostatistical data using convolved covariance functions. Mathematical Geology 39, 225–245.

    Article  MathSciNet  Google Scholar 

  • Mardia, K. V. and Goodall, C. R. (1993). Spatial-temporal analysis of multivariate environmental monitoring data. In Multivariate Environmental Statistics. North-Holland Series in Statistics and Probability, volume 6, pages 347–386. North-Holland, Amsterdam.

  • Priestley, M. B. (1981). Spectral analysis and time series, volume 1. Academic press London.

    MATH  Google Scholar 

  • R Core Team (2017). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.

    Google Scholar 

  • Royle, J. A. and Berliner, L. M. (1999). A hierarchical approach to multivariate spatial modeling and prediction. Journal of Agricultural, Biological, and Environmental Statistics 4, 29–56.

    Article  MathSciNet  Google Scholar 

  • Sain, S. and Cressie, N. (2007). A spatial model for multivariate lattice data. Journal of Econometrics 140, 226–259.

    Article  MathSciNet  Google Scholar 

  • Sain, S. R., Furrer, R., and Cressie, N. (2011). A spatial analysis of multivariate output from regional climate models. The Annals of Applied Statistics 5, 150–175.

    Article  MathSciNet  Google Scholar 

  • Samoli, E., Peng, R., Ramsay, T., Pipikou, M., Touloumi, G., Dominici, F., Burnett, R., Cohen, A., Krewski, D., Samet, J., and Katsouyanni, K. (2008). Acute effects of ambient particulate matter on mortality in Europe and North America: Results from the APHENA study. Environmental health perspectives 116, 1480–1486.

    Article  Google Scholar 

  • Schmidt, A. M. and Gelfand, A. E. (2003). A bayesian coregionalization approach for multivariate pollutant data. Journal of Geophysical Research: Atmospheres 108,.

  • Tai, A. P., Mickley, L. J., and Jacob, D. J. (2010). Correlations between fine particulate matter (\({\text{ PM }}_{2.5}\)) and meteorological variables in the United States: Implications for the sensitivity of \({\text{ PM }}_{2.5}\) to climate change. Atmospheric Environment 44, 3976 – 3984.

    Article  Google Scholar 

  • Ver Hoef, J. M. and Barry, R. P. (1998). Constructing and fitting models for cokriging and multivariable spatial prediction. Journal of Statistical Planning and Inference 69, 275–294.

    Article  MathSciNet  Google Scholar 

  • Ver Hoef, J. M. and Cressie, N. (1993). Multivariable spatial prediction. Mathematical Geology 25, 219–240.

    Article  MathSciNet  Google Scholar 

  • Ver Hoef, J. M., Cressie, N., and Barry, R. P. (2004). Flexible spatial models for kriging and cokriging using moving averages and the fast Fourier transform (FFT). Journal of Computational and Graphical Statistics 13, 265–282.

    Article  MathSciNet  Google Scholar 

  • Wackernagel, H. (2003). Multivariate geostatistics: An Introduction with Applications. Berlin: Springer, 3rd edition.

    Book  Google Scholar 

  • Whittle, P. (1954). On stationary processes in the plane. Biometrika 41, 434–449.

    Article  MathSciNet  Google Scholar 

  • Zhang, H. (2007). Maximum-likelihood estimation for multivariate spatial linear coregionalization models. Environmetrics 18, 125–139.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Sun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 475 KB)

Supplementary material 2 (csv 134 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qadir, G.A., Euán, C. & Sun, Y. Flexible Modeling of Variable Asymmetries in Cross-Covariance Functions for Multivariate Random Fields. JABES 26, 1–22 (2021). https://doi.org/10.1007/s13253-020-00414-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13253-020-00414-2

Keywords

Navigation