Skip to main content
Log in

Deep sequencing identifies conserved and novel microRNAs from antlers cartilage of Chinese red deer (Cervus elaphus)

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

Deer antlers are the only mammalian appendages subject to an annual cycle of epimorphic regeneration. Within the rapid-growth stage, they display the fastest cartilage development in the animal kingdom. To identify microRNA (miRNA) profiling in red deer (Cervus elaphus) antler cartilage, we applied deep sequencing technology to a small RNA library constructed from pooled cartilage (three antlers from three individuals). We generated 9,520,645 mappable reads with a size distribution of between 15 and 30 nucleotides (miRNAs of 18 nucleotides were the most abundant group: 31 %). Bioinformatics data mining revealed 399 miRNAs in antler cartilage, of which 345 were highly conserved and expressed in 25 other mammals, including the cattle (Bos taurus) and in humans (Homo sapiens). The remaining 54 miRNAs we identified were novel and likely to be antler-cartilage specific, but were expressed at low levels. The identification of these known and newly identified miRNAs in antler cartilage significantly enhances our understanding of the miRNA profiling of regenerating antler cartilage. Further studies are necessary to better understand miRNAs-regulated antlerogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Allen SP, Maden M, Price JS (2002) A role for retinoic acid in regulating the regeneration of deer antlers. Dev Biol 251:409–423

    Article  CAS  PubMed  Google Scholar 

  • Ambady S, Wu Z, Dominko T (2012) Identification of novel MicroRNAs in Xenopus laevis metaphase II arrested eggs. Genesis 50:286–299

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ambros V (2001) microRNAs: tiny regulators with great potential. Cell 107:823–826

    Article  CAS  PubMed  Google Scholar 

  • Ambros V, Bartel B, Bartel DP, Burge CB, Carrington JC, Chen X, Dreyfuss G, Eddy SR, Griffiths-Jones S, Marshall M et al (2003) A uniform system for microRNA annotation. RNA 9:277–279

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Banks JW, Newbrey WJ (1983a) Light microscopic studies of the ossification process in developing antlers. In: Brown RD (ed) Antler Development in cervidea: a proceedings of the first international symposium of the Caesar Kleberg Wildlife Research Institute, College of Agriculture, Texas A&I University, Kingsville, Texas. Kingsville: Caesar Kleberg Wildlife Research Institute, pp 231–260

  • Banks JW, Newbry WJ (1983) Antler development as a unique modification of mammalian endochondral ossification. In: Banks RD (ed) Antler developments in cervidae. Caesar Kleburg Wildlife Research Institute, Kingsville, pp 279–306

    Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  • Cai Y, Yu X, Zhou Q, Yu C, Hu H, Liu J, Lin H, Yang J, Zhang B, Cui P et al (2010) Novel microRNAs in silkworm (Bombyx mori). Funct Integr Genomics 10:405–415

    Article  CAS  PubMed  Google Scholar 

  • Cai EH, Gao YX, Wei ZZ, Chen WY, Yu P, Li K (2012) Serum miR-21 expression in human esophageal squamous cell carcinomas. Asian Pac J Cancer Prev 13:1563–1567

    Article  PubMed  Google Scholar 

  • Camarillo C, Swerdel M, Hart RP (2011) Comparison of microarray and quantitative real-time PCR methods for measuring MicroRNA levels in MSC cultures. Methods Mol Biol 698:419–429

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Caponi S, Funel N, Frampton AE, Mosca F, Santarpia L, Van der Velde AG, Jiao LR, De Lio N, Falcone A, Kazemier G et al (2012) The good, the bad and the ugly: a tale of miR-101, miR-21 and miR-155 in pancreatic intraductal papillary mucinous neoplasms. Ann Oncol 24:734–741

    Article  PubMed  Google Scholar 

  • Chapman DI (1975) Antlers-bones of contention. Mamm Rev 5:121–172

    Article  Google Scholar 

  • Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT, Barbisin M, Xu NL, Mahuvakar VR, Andersen MR et al (2005) Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33:e179–e187

    Article  PubMed Central  PubMed  Google Scholar 

  • Chen X, Li Q, Wang J, Guo X, Jiang X, Ren Z, Weng C, Sun G, Wang X, Liu Y et al (2009) Identification and characterization of novel amphioxus microRNAs by Solexa sequencing. Genome Biol 10:R78–R90

    Article  PubMed Central  PubMed  Google Scholar 

  • Chen YH, Wang SQ, Wu XL, Shen M, Chen ZG, Chen XG, Liu YX, Zhu XL, Guo F, Duan XZ et al (2011) Characterization of microRNAs expression profiling in one group of Chinese urothelial cell carcinoma identified by Solexa sequencing. Urol Oncol 31:219–227

    Article  PubMed  Google Scholar 

  • Chen C, Deng B, Qiao M, Zheng R, Chai J, Ding Y, Peng J, Jiang S (2012) Solexa sequencing identification of conserved and novel microRNAs in backfat of Large White and Chinese Meishan pigs. PLoS One 7:e31426–e31435

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Danks J, Dacke C, Flik G, Gay C (1999) Calcium metabolism: comparative endocrinology. Bio Scientifica Ltd, Bristol, pp 131–138

    Google Scholar 

  • de Crombrugghe B, Lefebvre V, Behringer RR, Bi W, Murakami S, Huang W (2000) Transcriptional mechanisms of chondrocyte differentiation. Matrix Biol 19:389–394

    Article  PubMed  Google Scholar 

  • Dippold RP, Vadigepalli R, Gonye GE, Hoek JB (2012) Chronic ethanol feeding enhances miR-21 induction during liver regeneration while inhibiting proliferation in rats. Am J Physiol Gastrointest Liver Physiol 303:G733–G743

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Drayton RM (2012) The role of microRNA in the response to cisplatin treatment. Biochem Soc Trans 40:821–825

    Article  CAS  PubMed  Google Scholar 

  • Faragalla H, Youssef YM, Scorilas A, Khalil B, White NM, Mejia-Guerrero S, Khella H, Jewett MA, Evans A, Lichner Z et al (2012) The clinical utility of miR-21 as a diagnostic and prognostic marker for renal cell carcinoma. J Mol Diagn 14:385–392

    Article  PubMed  Google Scholar 

  • Faucheux C, Nesbitt SA, Horton MA, Price JS (2001) Cells in regenerating deer antler cartilage provide a microenvironment supports osteoclast differentiation. J Exp Biol 204:443–455

    CAS  PubMed  Google Scholar 

  • Faucheux C, Horton MA, Price JS (2002) Nuclear localization of type I parathyroid hormone/parathyroid hormone-related protein receptors in deer antler osteoclasts: evidence for parathyroid hormone-related protein and receptor activator of NF-κB-dependent effects on osteoclast formation in regenerating mammalian bone. J Bone Miner Res 17:455–464

    Article  CAS  PubMed  Google Scholar 

  • Faucheux C, Nicholls BM, Allen S, Danks JA, Horton MA, Price JS (2004) Parathyroid hormone-related peptide may play a role in deer antler regeneration. Dev Dyn 231:88–97

    Article  CAS  PubMed  Google Scholar 

  • Friedman RC, Farh KK, Burge CB, Bartel DP (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19:92–105

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Goss RJ (1970) Problems of antlerogenesis. Clin Orthopaed 69:227–238

    Article  CAS  Google Scholar 

  • Goss RJ (1983) Deer antlers: regeneration, function and evolution. Academic Press, New York

    Google Scholar 

  • Gu Z, Eleswarapu S, Jiang H (2007) Identification and characterization of microRNAs from the bovine adipose tissue and mammary gland. FEBS Lett 581:981–988

    Article  CAS  PubMed  Google Scholar 

  • Hannon GJ (2002) RNA interference. Nature 418:244–251

    Article  CAS  PubMed  Google Scholar 

  • Hermansen SK, Dahlrot RH, Nielsen BS, Hansen S, Kristensen BW (2012) MiR-21 expression in the tumor cell compartment holds unfavorable prognostic value in gliomas. J Neurooncol 111:71–81

    Article  PubMed  Google Scholar 

  • Hu W, Meng X, Lu T, Wu L, Li T, Li M, Tian Y (2013) MicroRNA-1 inhibits the proliferation of Chinese sika deer-derived cartilage cells by binding to the 3′-untranslated region of IGF-1. Mol Med Rep 8:523–528

    PubMed  Google Scholar 

  • Hu W, Li T, Wu L, Li M, Meng X (2014) Identification of microRNA-18a as a novel regulator of the insulin-like growth factor-1 in the proliferation and regeneration of deer antler. Biotechnol Lett 36:703–710

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Ju Z, Li Q, Hou Q, Wang C, Li J, Li R, Wang L, Sun T, Hang S et al (2011) Solexa sequencing of novel and differentially expressed microRNAs in testicular and ovarian tissues in Holstein cattle. Int J Biol Sci 7:1016–1026

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ji Z, Wang G, Xie Z, Zhang C, Wang J (2012) Identification and characterization of microRNA in the dairy goat (Capra hircus) mammary gland by Solexa deep-sequencing technology. Mol Biol Rep 39:9361–9371

    Article  CAS  PubMed  Google Scholar 

  • Jiang J, Lee EJ, Gusev Y, Schmittgen TD (2005) Real-time expression profiling of microRNA precursors in human cancer cell lines. Nucl Acids Res 33:5394–5403

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kierdorf U, Li C, Price JS (2009) Improbable appendages: deer antler renewal as a unique case of mammalian regeneration. Semin Cell Dev Biol 20:535–542

    Article  PubMed  Google Scholar 

  • Kobayashi T, Lu J, Cobb BS, Rodda SJ, McMahon AP, Schipani E, Merkenschlager M, Kronenberg HM (2008) Dicer-dependent pathways regulate chondrocyte proliferation and differentiation. Proc Natl Acad Sci USA 105:1949–1954

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854

    Article  CAS  PubMed  Google Scholar 

  • Legeai F, Rizk G, Walsh T, Edwards O, Gordon K, Lavenier D, Leterme N, Méreau A, Nicolas J, Tagu D et al (2010) Bioinformatic prediction, deep sequencing of microRNAs and expression analysis during phenotypic plasticity in the pea aphid, Acyrthosiphon pisum. BMC Genom 11:281–289

    Article  Google Scholar 

  • Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB (2003) Prediction of mammalian microRNA targets. Cell 115:787–798

    Article  CAS  PubMed  Google Scholar 

  • Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15–20

    Article  CAS  PubMed  Google Scholar 

  • Li C (2012) Deer antler regeneration: a stem cell-based epimorphic process. Birth Defects Res C Embryo Today 96:51–62

    Article  CAS  PubMed  Google Scholar 

  • Li C, Clark DE, Lord EA, Stanton JA, Suttie JM (2002) Sampling technique to discriminate the different tissue layers of growing antler tips for gene discovery. Anat Rec 268:125–130

    Article  CAS  PubMed  Google Scholar 

  • Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J, Bartel DP, Linsley PS, Johnson JM (2005) Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433:769–773

    Article  CAS  PubMed  Google Scholar 

  • Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA et al (2005) MicroRNA expression profiles classify human cancers. Nature 435:834–838

    Article  CAS  PubMed  Google Scholar 

  • Nakamura Y, Inloes JB, Katagiri T, Kobayashi T (2011) Chondrocyte-specific microRNA-140 regulates endochondral bone development and targets Dnpep to modulate bone morphogenetic protein signaling. Mol Cell Biol 31:3019–3028

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pasquinelli AE, Reinhart BJ, Slack F, Martindale MQ, Kuroda MI, Maller B, Hayward DC, Ball EE, Degnan B, Müller P et al (2000) Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 408:86–89

    Article  CAS  PubMed  Google Scholar 

  • Pillai RS, Bhattacharyya SN, Artus CG, Zoller T, Cougot N, Basyuk E, Bertrand E, Filipowicz W (2005) Inhibition of translational initiation by let-7 microRNA in human cells. Science 309:1573–1576

    Article  CAS  PubMed  Google Scholar 

  • Price JS, Oyajobi BO, Oreffo RO, Russell RG (1994) Cells cultured from the growing tip of red deer antler express alkaline phosphatase and proliferate in response to insulin-like growth factor-I. J Endocrinol 143:R9–R16

    Article  CAS  PubMed  Google Scholar 

  • Price JS, Oyajobi BO, Nalin AM, Frazer A, Russell RG, Sandell LJ (1996) Chondrogenesis in the regenerating antler tip in red deer: expression of collagen types I, IIA, IIB, and X demonstrated by in situ nucleic acid hybridization and immunocytochemistry. Dev Dyn 205:332–347

    Article  CAS  PubMed  Google Scholar 

  • Reinhart BJ, Weinstein EG, Rhoades MW, Bartel B, Bartel DP (2002) MicroRNAs in plants. Genes Dev 16:1616–1626

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sayed D, Abdellatif M (2011) MicroRNAs in development and disease. Physiol Rev 91:827–887

    Article  CAS  PubMed  Google Scholar 

  • Schmittgen TD, Jiang J, Liu Q, Yang L (2004) A high-throughput method to monitor the expression of microRNA precursors. Nucleic Acids Res 32:e43–e52

    Article  PubMed Central  PubMed  Google Scholar 

  • Sdassi N, Silveri L, Laubier J, Tilly G, Costa J, Layani S, Vilotte JL, Le Provost F (2009) Identification and characterization of new miRNAs cloned from normal mouse mammary gland. BMC Genom 10:149–158

    Article  Google Scholar 

  • Sun J, Zhong N, Li Q, Min Z, Zhao W, Sun Q, Tian L, Yu H, Shi Q, Zhang F et al (2011) MicroRNAs of rat articular cartilage at different developmental stages identified by Solexa sequencing. Osteoarthr Cartil 19:1237–1245

    Article  CAS  PubMed  Google Scholar 

  • Szuwart T, Kierdorf H, Kierdorf U, Clemen G (2002) Histochemical and ultrastructural studies of cartilage resorption and acid phosphatase activity during antler growth in fallow deer (Dama dama). Anat Rec 268:66–72

    Article  CAS  PubMed  Google Scholar 

  • Vaz C, Ahmad HM, Sharma P, Gupta R, Kumar L, Kulshreshtha R, Bhattacharya A (2010) Analysis of microRNA transcriptome by deep sequencing of small RNA libraries of peripheral blood. BMC Genom 11:288–305

    Article  Google Scholar 

  • Wei Z, Liu X, Feng T, Chang Y (2011) Novel and conserved microRNAs in Dalian purple urchin (Strongylocentrotus nudus) identified by next generation sequencing. Int J Biol Sci 7:180–192

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wheeler BM, Heimberg AM, Moy VN, Sperling EA, Holstein TW, Heber S, Peterson KJ (2009) The deep evolution of metazoan microRNAs. Evol Dev 11:50–68

    Article  CAS  PubMed  Google Scholar 

  • Yekta S, Shih IH, Bartel DP (2004) MicroRNA-directed cleavage of HOXB8 mRNA. Science 304:594–596

    Article  CAS  PubMed  Google Scholar 

  • Zhang BH, Wang QL, Pan XP (2007) MicroRNAs and their regulatory roles in animals and plants. J Cell Physiol 210:279–289

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Yao B, Zhang M, Wang S, Zhang H, Xiao W (2013) Comparative analysis of differentially expressed genes in Sika deer antler at different stages. Mol Biol Rep 40:1665–1676

    Article  CAS  PubMed  Google Scholar 

  • Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Mr. Shouzhuang YANG at the Qinghuangdao Safari Park for his help and technical support.

Conflict of interest

The authors declare that there is no conflict of interest.

Ethical Statement

This study was subject to approval by the Animal Ethics Committee of the Northeast Forestry University (AEC-NEFU; Permit Number: 2012-0016).

Funding

This work was funded by the Fundamental Research Funds for the Central Universities (No. 2572014EA05-01 to DZ) and the Program for New Century Excellent Talents in University (No. NCET-11-0609 to DZ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Zheng.

Additional information

Yanxia Chen and Xuedong Liu have equally contributed to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Liu, X., Yang, X. et al. Deep sequencing identifies conserved and novel microRNAs from antlers cartilage of Chinese red deer (Cervus elaphus). Genes Genom 37, 419–427 (2015). https://doi.org/10.1007/s13258-015-0270-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-015-0270-9

Keywords

Navigation