Skip to main content
Log in

Functional evaluation of alternative splicing in the FAM190A gene

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

The human FAM190A gene undergoes frequent alteration in human cancer, most commonly involving in-frame deletions in exon 9 or exons 9 & 10. These deletions form novel peptide sequences, serving as presumptive cancer-specific neo antigens. However, it remains elusive whether these in-frame deletions of FAM190A could induce oncogenic properties in vivo. In this study, we aimed to explore the functional significance of in-frame deletions in FAM190A genes. We generated two deletion mutant forms, FAM190AΔexon9 and FAM190AΔexon9&10, and examined their gain-of-function effects in vitro and in vivo. Global transcript profiling in NIH3T3 cells revealed that the transcripts displaying altered expression following introduction of FAM190AΔexon9 and FAM190AΔexon9&10 were significantly enriched for genes assigned to cellular movement and cell-to-cell signaling, respectively. Furthermore, ectopic expression of FAM190AΔexon9 and FAM190AΔexon9&10 induced in vivo tumor formation in nu/nu mice. Taken together, our results are the first to demonstrate the in vivo oncogenic properties of in-frame deletions in the FAM190A gene and indicate that these transcript variants might be clinically applicable as therapeutic targets in patients with cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bemmo A, Dias C, Rose AAN, Russo C, Siegel P, Majewski J (2010) Exon-level transcriptome profiling in murine breast cancer reveals splicing changes specific to tumors with different metastatic abilities. PLoS ONE 5:e11981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonomi S, Gallo S, Catillo M, Pignataro D, Biamonti G, Ghigna C (2013) Oncogenic alternative splicing switches: role in cancer progression and prospects for therapy. Int J Cell Biol 2013:17

    Article  CAS  Google Scholar 

  • Caceres JF, Kornblihtt AR (2002) Alternative splicing: multiple control mechanisms and involvement in human disease. Trends Genet 18:186–193

    Article  CAS  PubMed  Google Scholar 

  • Danckwardt S, Neu-Yilik G, Thermann R, Frede U, Hentze MW, Kulozik AE (2002) Abnormally spliced β-globin mRNAs: a single point mutation generates transcripts sensitive and insensitive to nonsense-mediated mRNA decay. Blood 99:1811–1816

    Article  CAS  PubMed  Google Scholar 

  • Dang L, Fan X, Chaudhry A, Wang M, Gaiano N, Eberhart CG (2006) Notch3 signaling initiates choroid plexus tumor formation. Oncogene 25:487–491

    Article  CAS  PubMed  Google Scholar 

  • DuPage M, Mazumdar C, Schmidt LM, Cheung AF, Jacks T (2012) Expression of tumour-specific antigens underlies cancer immunoediting. Nature 482:405–409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fackenthal JD, Godley LA (2008) Aberrant RNA splicing and its functional consequences in cancer cells. Dis Models Mech 1:37–42

    Article  CAS  Google Scholar 

  • Fungtammasan A, Walsh E, Chiaromonte F, Eckert KA, Makova KD (2012) A genome-wide analysis of common fragile sites: what features determine chromosomal instability in the human genome? Genome Res 22:993–1005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gubin MM, Zhang X, Schuster H, Caron E, Ward JP, Noguchi T, Ivanova Y, Hundal J, Arthur CD, Krebber WJ et al (2014) Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature 515:577–581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He C, Zhou F, Zuo Z, Cheng H, Zhou R (2009) A global view of cancer-specific transcript variants by subtractive transcriptome-wide analysis. PLoS ONE 4:e4732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoeijmakers JH (2009) DNA damage, aging, and cancer. N Engl J Med 361:1475–1485

    Article  CAS  PubMed  Google Scholar 

  • Maniatis T, Tasic B (2002) Alternative pre-mRNA splicing and proteome expansion in metazoans. Nature 418:236–243

    Article  CAS  PubMed  Google Scholar 

  • Matlin AJ, Clark F, Smith CWJ (2005) Understanding alternative splicing: towards a cellular code. Nat Rev Mol Cell Biol 6:386–398

    Article  CAS  PubMed  Google Scholar 

  • Patel K, Scrimieri F, Ghosh S, Zhong J, Kim M-S, Ren YR, Morgan RA, Iacobuzio-Donahue CA, Pandey A, Kern SE (2013) FAM190A deficiency creates a cell division defect. Am J Pathol 183:296–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Provost E, Rhee J, Leach SD (2007) Viral 2A peptides allow expression of multiple proteins from a single ORF in transgenic zebrafish embryos. Genesis 45:625–629

    Article  CAS  PubMed  Google Scholar 

  • Sak K (2012) Chemotherapy and dietary phytochemical agents. Chemother Res Pract 2012:282570

    PubMed  PubMed Central  Google Scholar 

  • Scrimieri F, Calhoun ES, Patel K, Gupta R, Huso DL, Hruban RH, Kern SE (2011) FAM190A rearrangements provide a multitude of individualized tumor signatures and neo-antigens in cancer. Oncotarget 2:69–75

    Article  PubMed  PubMed Central  Google Scholar 

  • Skotheim RI, Nees M (2007) Alternative splicing in cancer: noise, functional, or systematic? Int J Biochem Cell Biol 39:1432–1449

    Article  CAS  PubMed  Google Scholar 

  • Venables JP (2004) Aberrant and alternative splicing in cancer. Can Res 64:7647–7654

    Article  CAS  Google Scholar 

  • Wang R-F, Wang HY (2017) Immune targets and neoantigens for cancer immunotherapy and precision medicine. Cell Res 27:11–37

    Article  CAS  PubMed  Google Scholar 

  • Yaari G, Bolen CR, Thakar J, Kleinstein SH (2013) Quantitative set analysis for gene expression: a method to quantify gene set differential expression including gene-gene correlations. Nucleic Acids Res 41:e170–e170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by an Incheon National University research Grant (2018-0240).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joon Tae Park.

Ethics declarations

Conflict of interest

Sung Ung Kang and Joon Tae Park declare that they have no conflict of interest.

Ethical approval

This study had been approved by the International Animal Care and Use Committee of Johns Hopkins Medicine (JHM) (protocol number: 20130112001).

Informed consent

Informed consent was obtained from all individual participants included in the study.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, S.U., Park, J.T. Functional evaluation of alternative splicing in the FAM190A gene. Genes Genom 41, 193–199 (2019). https://doi.org/10.1007/s13258-018-0752-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-018-0752-7

Keywords

Navigation