Skip to main content
Log in

Establishment of a novel myocarditis mouse model based on cyclosporine A

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

Background

Myocarditis is a myocardial injury that can easily cause adolescent death. Traditional research models of animal invasion with viral components, lipopolysaccharide (LPS) or porcine myocardial myosin, among others, have the shortcomings of potential biological safety hazards and high animal mortality.

Objective

To explore the construction of a novel myocarditis model with cyclosporine A and the potential genes and pathways associated with it.

Methods

BALB/c mice were used in this study, and cyclosporin A and LPS were injected into the peritoneal cavity of mice. The successful establishment of the model was assessed by detecting serum myocardial injury markers and inflammatory factors levels, HE, IHC staining, and RT-qPCR methods. Key genes were obtained using the GSE35182 dataset from the GEO database and validated with the RT-qPCR method.

Results

We found that a large number of inflammatory cells infiltrated the myocardium of mice in each group of Cyclosporin A constructed model, while the expression of inflammatory factor indicators was increased, and this model has the characteristics of high degree of local inflammation in myocardial tissue, low mortality, and safe and non-toxic treatment. Using GSE35182 data, we selected 18 Hub genes and validated Hub genes in myocardial tissue with RT-qPCR and found that multiple signaling pathways such as Toll-likereceptor signaling pathway(TLRs), Rap1 signal pathway(Rap1), and Chemokine signaling pathway may be involved in the development of myocarditis.

Conclusion

Cyclosporin A can construct a new myocarditis model, and TLRs, Chemokines and Rap1 signaling pathways may be the core pathways of myocarditis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Altara R, Mallat Z, Booz GW, Zouein FA (2016) The CXCL10/CXCR3 axis and cardiac inflammation: implications for immunotherapy to treat infectious and noninfectious diseases of the heart. J Immunol Res 2016:4396368

    Article  PubMed  PubMed Central  Google Scholar 

  • Alvarez AM, DeOcesano-Pereira C, Teixeira C, Moreira V (2020) IL-1β and TNF-α modulation of proliferated and committed myoblasts: IL-6 and COX-2-derived prostaglandins as key actors in the mechanisms involved. Cells 9:2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atri C, Guerfali FZ, Laouini D (2018) Role of human macrophage polarization in inflammation during infectious diseases. Int J Mol Sci 19(6):1801

    Article  PubMed  PubMed Central  Google Scholar 

  • Bacmeister L, Schwarzl M, Warnke S, Stoffers B, Blankenberg S, Westermann D, Lindner D (2019) Inflammation and fibrosis in murine models of heart failure. Basic Res Cardiol 114:19

    Article  PubMed  Google Scholar 

  • Bonavita CM, White TM, Francis J, Cardin RD (2020) Heart dysfunction following long-term murine cytomegalovirus infection: fibrosis, hypertrophy, and tachycardia. Viral Immunol 33(3):237–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen CY, Kao CL, Liu CM (2018) The cancer prevention, anti-inflammatory and anti-oxidation of bioactive phytochemicals targeting the TLR4 signaling pathway. Int J Mol Sci 19(9):2729

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen C, Hou J, Tanner JJ, Cheng J (2020) Bioinformatics methods for mass spectrometry-based proteomics data analysis. Int J Mol Sci 21:2873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frigeri M, Meyer P, Banfi C, Giraud R, Hachulla AL, Spoerl D, Friedlaender A, Pugliesi-Rinaldi A, Dietrich PY (2018) Immune checkpoint inhibitor-associated myocarditis: a new challenge for cardiologists. Can J Cardiol 34:92.e1-92.e3

    Article  PubMed  Google Scholar 

  • George L, Menden H, Xia S, Yu W, Holmes A, Johnston J, Reid KJ, Josephson CD, Patel RM, Ahmed A, Mulrooney N, Miller NA, Farrow E, Sampath V (2021) ITGB2 (Integrin β2) immunomodulatory gene variants in premature infants with necrotizing enterocolitis. J Pediatr Gastroenterol Nutr 72:e37–e41

    Article  CAS  PubMed  Google Scholar 

  • Golpour A, Patriki D, Hanson PJ, McManus B, Heidecker B (2021) Epidemiological impact of myocarditis. J Clin Med 10:603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hua X, Hu G, Hu Q, Chang Y, Hu Y, Gao L, Chen X, Yang PC, Zhang Y, Li M, Song J (2020) Single-cell RNA sequencing to dissect the immunological network of autoimmune myocarditis. Circulation 142:384–400

    Article  CAS  PubMed  Google Scholar 

  • Jain A, Irizarry-Caro RA, McDaniel MM, Chawla AS, Carroll KR, Overcast GR, Philip NH, Oberst A, Chervonsky AV, Katz JD, Pasare C (2020) T cells instruct myeloid cells to produce inflammasome-independent IL-1β and cause autoimmunity. Nat Immunol 21(1):65–74

    Article  CAS  PubMed  Google Scholar 

  • Kang M, An J (2021) Viral myocarditis. In: StatPearls

  • Kockx M, Jessup W, Kritharides L (2010) Cyclosporin A and atherosclerosis–cellular pathways in atherogenesis. Pharmacol Ther 128(1):106–118

    Article  CAS  PubMed  Google Scholar 

  • Kogan EA, Blagova OV, Faizullina NM, Nedostup AV, Sulimov VA (2018) Povyshennaia ékspressiia toll-like-retseptorov 2-go i 9-go tipov v miokarde kak marker aktivnogo miokardita i vozmozhnyĭ prediktor éffektivnosti lecheniia [Increased myocardial expression of Toll-like receptors 2 and 9 as a marker of active myocarditis and a possible predictor of therapeutic effectiveness]. Arkh Patol 80(1):11–20

    Article  CAS  PubMed  Google Scholar 

  • Lacey D, Bouillet P (2016) Deregulation of TNF expression can also cause heart valve disease. Cytokine 77:248–249

    Article  PubMed  Google Scholar 

  • Lasrado N, Reddy J (2020) An overview of the immune mechanisms of viral myocarditis. Rev Med Virol 30:1–14

    Article  CAS  PubMed  Google Scholar 

  • Li M, Wang X, Xie Y, Xie Y, Zhang X, Zou Y, Ge J, Chen R (2013) Initial weight and virus dose: two factors affecting the onset of acute coxsackievirus B3 myocarditis in C57BL/6 mouse—a histopathology-based study. Cardiovasc Pathol 22(1):96–101

    Article  PubMed  Google Scholar 

  • Li L, Zhong M, Zuo Q, Ma W, Jiang Z, Xiao J (2021) Effects of nano-α-linolenic acid and miR-146 on mice with viral myocarditis. J Nanosci Nanotechnol 21:1365–1371

    Article  CAS  PubMed  Google Scholar 

  • Liu YC, Zou XB, Chai YF, Yao YM (2014) Macrophage polarization in inflammatory diseases. Int J Biol Sci 10:520–529

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu T, Zhang M, Niu H, Liu J, Ruilian M, Wang Y, Xiao Y, Xiao Z, Sun J, Dong Y, Liu X (2019) Astragalus polysaccharide from astragalus melittin ameliorates inflammation via suppressing the activation of TLR-4/NF-κB p65 signal pathway and protects mice from CVB3-induced virus myocarditis. Int J Biol Macromol 126:179–186

    Article  CAS  PubMed  Google Scholar 

  • Makino N, Toyofuku T, Takegahara N, Takamatsu H, Okuno T, Nakagawa Y, Kang S, Nojima S, Hori M, Kikutani H, Kumanogoh A (2008) Involvement of Sema4A in the progression of experimental autoimmune myocarditis. FEBS Lett 582:3935–3940

    Article  CAS  PubMed  Google Scholar 

  • Nogueira LG, Santos RH, Ianni BM, Fiorelli AI, Mairena EC, Benvenuti LA, Frade A, Donadi E, Dias F, Saba B, Wang HT, Fragata A, Sampaio M, Hirata MH, Buck P, Mady C, Bocchi EA, Stolf NA, Kalil J, Cunha-Neto E (2012) Myocardial chemokine expression and intensity of myocarditis in Chagas cardiomyopathy are controlled by polymorphisms in CXCL9 and CXCL10. PLoS Negl Trop Dis 6(10):e1867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osman MM, Lulic D, Glover L, Stahl CE, Lau T, van Loveren H, Borlongan CV (2011) Cyclosporine-A as a neuroprotective agent against stroke: its translation from laboratory research to clinical application. Neuropeptides 45:359–368

    Article  CAS  PubMed  Google Scholar 

  • Pappritz K, Savvatis K, Miteva K, Kerim B, Dong F, Fechner H, Müller I, Brandt C, Lopez B, González A, Ravassa S, Klingel K, Diez J, Reinke P, Volk HD, Van Linthout S, Tschöpe C (2018) Immunomodulation by adoptive regulatory T-cell transfer improves Coxsackievirus B3-induced myocarditis. FASEB J. https://doi.org/10.1096/fj.201701408R

    Article  PubMed  Google Scholar 

  • Pollack A, Kontorovich AR, Fuster V, Dec GW (2015) Viral myocarditis–diagnosis, treatment options, and current controversies. Nat Rev Cardiol 12:670–680

    Article  PubMed  Google Scholar 

  • Rivadeneyra L, Charó N, Kviatcovsky D, de la Barrera S, Gómez RM, Schattner M (2018) Role of neutrophils in CVB3 infection and viral myocarditis. J Mol Cell Cardiol 125:149–161

    Article  CAS  PubMed  Google Scholar 

  • Sagar S, Liu PP, Cooper LT Jr (2012) Myocarditis. Lancet 379:738–747

    Article  PubMed  Google Scholar 

  • Saha P, Smith A (2018) TNF-α (tumor necrosis factor-α). Arterioscler Thromb Vasc Biol 38:2542–2543

    Article  CAS  PubMed  Google Scholar 

  • Shang X, Lin K, Yu R, Zhu P, Zhang Y, Wang L, Xu J, Chen K (2019) Resveratrol protects the myocardium in sepsis by activating the phosphatidylinositol 3-kinases (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway and inhibiting the nuclear factor-κB (NF-κB) signaling pathway. Med Sci Monit 25:9290–9298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi Y, Pan H, Zhang HZ, Zhao XY, Jin J, Wang HY (2017) Lipoxin A4 mitigates experimental autoimmune myocarditis by regulating inflammatory response, NF-κB and PI3K/Akt signaling pathway in mice. Eur Rev Med Pharmacol Sci 21:1850–1859

    CAS  PubMed  Google Scholar 

  • Song H, Jang MG, Lee JY, Ko HC, Hur SP, Kim SJ (2019) Sasa quelpaertensis leaf extract mitigates fatigue and regulates the transcriptome profile in mice. Genes Genomics 41:317–324

    Article  CAS  PubMed  Google Scholar 

  • Tahvildari M, Dana R (2019) Low-dose IL-2 therapy in transplantation, autoimmunity, and inflammatory diseases. J Immunol 203:2749–2755

    Article  CAS  PubMed  Google Scholar 

  • Than VT, Tran HTT, Ly DV, Dang HV, Nguyen MN, Truong AD (2019) Bioinformatic identification and expression analysis of the chicken B cell lymphoma (BCL) gene. Genes Genomics 41:1195–1206

    Article  CAS  PubMed  Google Scholar 

  • Vallejo JG (2011) Role of toll-like receptors in cardiovascular diseases. Clin Sci (lond) 121(1):1–10

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Chen Y, Jiang J, Zhou A, Pan L, Chen Q, Qian Y, Chu M, Chen C (2014) Carvedilol has stronger anti-inflammation and anti-virus effects than metoprolol in murine model with coxsackievirus B3-induced viral myocarditis. Gene 547(2):195–201

    Article  CAS  PubMed  Google Scholar 

  • Wang R, Li D, Ouyang J, Tian X, Zhao Y, Peng X, Li S, Yu G, Yang J (2019) Leonurine alleviates LPS-induced myocarditis through suppressing the NF-кB signaling pathway. Toxicology 422:1–13

    Article  CAS  PubMed  Google Scholar 

  • Yang QQ, Li HN, Zhang ST, Yu YL, Wei W, Zhang X, Wang JY, Zeng XY (2020) Red nucleus IL-6 mediates the maintenance of neuropathic pain by inducing the productions of TNF-α and IL-1β through the JAK2/STAT3 and ERK signaling pathways. Neuropathology 40(4):347–357

    Article  CAS  PubMed  Google Scholar 

  • Yang B, Zheng CY, Zhang R, Zhao C, Li S, An Y (2021) Quercetin efficiently alleviates TNF-α-stimulated injury by signal transducer and activator of transcription 1 and mitogen-activated protein kinase pathway in H9c2 cells: a protective role of quercetin in myocarditis. J Cardiovasc Pharmacol 77(5):570–577

    CAS  PubMed  Google Scholar 

  • Ye C, Brand D, Zheng SG (2018) Targeting IL-2: an unexpected effect in treating immunological diseases. Signal Transduct Target Ther 3:2

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu Y, Shi H, Yu Y, Liu M, Li M, Liu X, Wang Y, Chen R (2020) Inhibition of calpain alleviates coxsackievirus B3-induced myocarditis through suppressing the canonical NLRP3 inflammasome/caspase-1-mediated and noncanonical caspase-11-mediated pyroptosis pathways. Am J Transl Res 12(5):1954–1964

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao M, Wu J, Li X, Gao Y (2018) Urinary candidate biomarkers in an experimental autoimmune myocarditis rat model. J Proteomics 179:71–79

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by grants from the National Natural Science Foundation of China (82074250) , the Natural Science Foundation of Hunan Province (2021JJ30508 and 2020JJ4063) , the Hunan Province Chinese Medicine Research Program Project (2021055) , Changsha Outstanding Innovative Youth Training Program (kq2009070) , Basic Medicine (1), Key Discipline of Hunan University of Traditional Chinese Medicine, Excellent Teaching Team for Postgraduates in Hunan Province (Teaching Team for Postgraduates in Basic Medicine, 118) and Hunan University Student Innovation and Entrepreneurship Training Program (S202110541048)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke Wei.

Ethics declarations

Conflict of interest

All authors declare that they do not have conflict of interest.

Ethics approval

The study was conducted according to the guidelines of the Declaration of Helsinki, and approved by the Ethics Committee of Experimental Animals of Hunan University of Chinese Medicine, China (LL2020120202, 1 December 2020).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

13258_2022_1267_MOESM1_ESM.tif

Supplementary Information All of the datasets analyzed were acquired from the Gene Expression Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/gds). We declare that the data and materials in this study will be provided free of charge to scientists for noncommercial purposes (TIF 32104 KB)

Supplementary file2 (JPG 54201 KB)

Supplementary file3 (JPG 104218 KB)

Supplementary file3 (XLSX 12 KB)

Supplementary file4 (XLSX 12 KB)

Supplementary file5 (XLSX 12 KB)

Supplementary file6 (XLSX 10 KB)

Supplementary file7 (XLSX 12 KB)

Supplementary file8 (XLSX 11 KB)

Supplementary file9 (XLSX 13 KB)

Supplementary file10 (XLSX 33 KB)

Supplementary file11 (XLSX 10 KB)

Supplementary file12 (XLSX 13 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, T.H., Jiang, Y.X., Chen, K.Q. et al. Establishment of a novel myocarditis mouse model based on cyclosporine A. Genes Genom 44, 1593–1605 (2022). https://doi.org/10.1007/s13258-022-01267-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-022-01267-4

Keywords

Navigation