Skip to main content
Log in

Multidisciplinary pre-design of supersonic aircraft

  • Original Paper
  • Published:
CEAS Aeronautical Journal Aims and scope Submit manuscript

Abstract

Forecasts predict a strong market for supersonic travel in the business sector. It is especially appealing for high-net-worth individuals because of both, the reduction of travel time and prestige. The ecological and economic challenges that are related to supersonic flight need adequate answers in terms of technology and tools to evaluate aircraft for the described task. This paper gives a short overview on research that has been conducted in the past, followed by the presentation of the work done by the authors. The integration of methods for the evaluation of supersonic business jets in the context of aircraft conceptual design is outlined. The determination of aerodynamic coefficients and loads is done by solving the inviscid Euler equations. Furthermore the propulsion module is extended and a mission analysis tool, which is used for fuel mass estimation is briefly explained. The methods for structural analysis are detailed. At the end the verification based on a reference configuration is described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Aerion:. Accessed on: December 4th, 2013. http://aerioncorp.com (2013)

  2. Anon: MSC NASTRAN 2012 Linear Static Analysis User’s Guide. MacNeal-Schwendler Corporation (2011)

  3. Aronstein, D., Schueler, K.: Conceptual design of a sonic boom constrained supersonic business aircraft. In: 42nd AIAA Aerospace Sciences Meeting and Exhibition, Reno, pp. 2004–0697 (2004)

  4. Brezillon, J., Carrier, G., Laban, M.: Multidisciplinary optimization of supersonic aircraft including low-boom considerations. J. Mech. Des. 133(10), 105,001–105,009 (2011)

  5. Chudoba, B., Coleman, G., Czysz, P., Butler, C.: Feasibility study of a supersonic business jet based on the learjet airframe. Aeronaut. J. 113(1146), 517 (2009)

    Google Scholar 

  6. Chudoba, B., Coleman, G., Oza, A., Czysz, P.: What price supersonic speed? A design anatomy of supersonic transportation part 1. Aeronaut. J. 112(1129), 141–151 (2008)

    Google Scholar 

  7. Chudoba, B., Oza, A., Coleman, G., Czysz, P.: What price supersonic speed? An applied market research case study part 2. Aeronaut. J. 112(1130), 219–231 (2008)

    Google Scholar 

  8. Deremaux, Y.: Executive public summary: Final aircraft configuration families. Tech. Rep. D5.23 HISAC T-5-36-1, Dassault Aviation (2009)

  9. Erickson, L.: Panel methods: an introduction. Tech. Rep. 2995, NASA (1990)

  10. Flack, R.D.: Fundamentals of jet propulsion with applications. Cambridge University Press, New York (2005)

    Book  Google Scholar 

  11. Fornasier, L.: Linearized potential flow analysis of complex aircraft configurations by hisss, a higher order panel method. In: 23rd AIAA Aerospace Sciences Meeting and Exhibition, Reno, vol. 14. AIAA (1985)

  12. Grewe, V.: Climate impact of a potential supersonic fleet. In: 1st CEAS European Air and Space Conference, vIP, CEAS-2007-421. CEAS (2007)

  13. Hansen, L., Heinze, W., Horst, P.: Blended wing body structures in multidisciplinary pre-design. Struct. Multidiscip. Optim. 36(1), 93–106 (2008)

    Article  Google Scholar 

  14. Haupt, M., Niesner, R., Unger, R., Horst, P.: Coupling techniques for thermal and mechanical fluid-structure-interactions in aeronautics. PAMM 5(1), 19–22 (2005)

    Article  Google Scholar 

  15. Heinze, W.: Entwerfen von Verkehrsflugzeugen II—Vorlesungsmanuskript. IFL-02/05. Institut fnr Flugzeugbau und Leichtbau, TU-Braunschweig (2005)

  16. Heinze, W., Österheld, C., Horst, P.: MultidisziplinSres flugzeugentwurfsverfahren prado - programmentwurf und anwendung im rahmen von flugzeug-konzeptstudien. In: Jahrbuch der DGLR-Jahrestagung 2001 in Hamburg. DGLR (2001)

  17. Henne, P.A.: Case for small supersonic civil aircraft. J. Aircr. 42(3), 765–774 (2005)

    Article  Google Scholar 

  18. Herrmann, U., Laban, M.: Multi-disciplinary analysis and optimisation applied to supersonic aircraft; part 2: Application and results. In: 48th AIAA/ASME/ASCE/AHS/ASC Structures. Structural Dynamics, and Materials Conference, Honolulu, HI, pp. 2007–1858. AIAA, AIAA (2007)

  19. Hoerner, S.: Fluid-dynamic drag: practical information on aerodynamic drag and hydrodynamic resistance. Hoerner Fluid Dynamics (1965)

  20. Horstmann, K.: Ein mehrfach-traglinienverfahren und seine verwendung fnr entwurf und nachrechnung nichtplanarer flngelanordnungen. Ph.D. thesis, Deutsche Forschungs-und Versuchsanstalt fnr Luft-und Raumfahrt (DFVLR) (1987)

  21. Howe, D.: Aircraft conceptual design synthesis. Professional Engineering Publishing (2000)

  22. Laban, M., Herrmann, U.: Multi-disciplinary analysis and optimisation applied to supersonic aircraft; part 1: Analysis tools. In: 48th AIAA/ASME/ASCE/AHS/ASC Structures. Structural Dynamics, and Materials Conference, Honolulu, HI, pp. 2007–1857. AIAA, AIAA (2007)

  23. Liebhardt, B., Lntjens, K.: An analyses of the market environment for supersonic business jets. In: Deutscher Luft- und Raumfahrtkongress 2011—Manuskripte, 241457, pp. 617–627. DGLR e.V., DGLR e.V. (2011)

  24. Liebhardt, B., Lntjens, K., Gollnick, V.: Estimation of the market potential for supersonic airliners via analysis of the global premium ticket market. In: 11th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference, Virginia Beach, VA, USA, AIAA 2011–6806. AIAA, AIAA (2011)

  25. LTH: Luftfahrttechnisches Handbuch. IABG mbH (2006)

  26. Mack, R.: A supersonic business-jet concept designed for low sonic boom. Tech. rep., NASA Langley Research Center, TM-2003-212435, Hampton, VA (2003)

  27. Mattingly, J., Heiser, W., Daley, D.: Aircraft engine design. American Institute of Aeronautics and Astronautics, Inc. (1987)

  28. Mavris, D., Hayden, W.: Formulation of an ippd methodology for the design of a supersonic business jet. Tech. rep, Georgia Institute of Technology (1996)

  29. Nagel, B., Bhnke, D., Gollnick, V., Schmollgruber, P., Rizzi, A., La Rocca, G., Alonso, J.: Communication in aircraft design: Can we establish a common language? In: 28th International Congress of the Aeronautical Sciences ICAS, Brisbane, Australia (2012)

  30. Österheld, C.: Physikalisch begrnndete analyseverfahren im integrierten multidisziplinSren flugzeugvorentwurf. Ph.D. thesis, TU-Braunschweig, Zentrum fnr Luft- und Raumfahrt (2003)

  31. Österheld, C., Heinze, W., Horst, P.: Influence of aeroelastic effects on preliminary aircraft design. In: Proceedings of ICAS Congress 2000, 1.4.5. ICAS (2000)

  32. Österheld, C., Heinze, W., Horst, P.: Preliminary design of a blended wing body configuration using the design tool prado. In: Proceedings der CEAS Conference on Multidisciplinary Aircraft Design and Optimisation (2001)

  33. Paulson, M.: Putting a q into supersonic flight. Prof. Pilot Mag. 41(3), 58–62 (2007)

    Google Scholar 

  34. Paulson, M.: Time is right to go forward with supersonic business jets. Prof. Pilot Mag. 47(3), 52–54 (2013)

    Google Scholar 

  35. SAI: Accessed on: December 4th, 2013. http://www.sai-qsstx.com (2013)

  36. Schlichting, H.: Grenzschicht-Theorie. Wissenschaftliche Bncherei, 8th edn. Braun, Karlsruhe (1982)

    Google Scholar 

  37. Schwamborn, D., Gerhold, T., Heinrich, R.: The dlr tau-code: recent applications in research and industry. In: European conference on computational fluid dynamics, ECCOMAS CFD (2006)

  38. Simmons, F., Freund, D.: Morphing concept for quiet supersonic jet boom mitigation. In: Proceedings of the 43rd AIAA Aerospace Sciences Meeting and Exhibit, American Institute for Aeronautics and Astronautics. Gulfstream Aerospace Corporation, Savannah, GA 31402–2206 (2005)

  39. Stoufflet, B., de Saint Martin, P., Deremaux, Y., NTgrier, J.: Design of a small supersonic transport aircraft with high environmental constraints. In: ICAS Proceedings, ISBN 0-9533991-9-2. ICAS (2008)

  40. Torenbeek, E.: Synthesis of subsonic airplane design. Kluwer Academic Pub (1982)

  41. Von Kaenel, R., Rizzi, A., Oppelstrup, J., Goetzendorf-Grabowski, T., Ghoreyshi, M., Cavagna, L., Bérard, A.: Ceasiom: Simulating stability and control with cfd/csm in aircraft conceptual design. In: 26th International Congress of the Aeronautical Sciences, ICAS (2008)

  42. Wiley, J.: The super-slow emergence of supersonic. Bus. Commer. Aviat. 101(3), 48 (2007)

    Google Scholar 

Download references

Acknowledgments

This research has partially been carried out within the framework of the VIP-3 project lead by DLR in Hamburg. The authors owe special thanks to Till Pfeiffer from DLR-LY for supporting the automated mesh generation with SUMO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Schuermann.

Additional information

This paper is based on a presentation at the German Aerospace Congress, September 10-12, 2013, Stuttgart, Germany.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schuermann, M., Gaffuri, M. & Horst, P. Multidisciplinary pre-design of supersonic aircraft. CEAS Aeronaut J 6, 207–216 (2015). https://doi.org/10.1007/s13272-014-0140-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13272-014-0140-1

Keywords

Navigation