Skip to main content

Advertisement

Log in

Adenosine induces cell cycle arrest and apoptosis via cyclinD1/Cdk4 and Bcl-2/Bax pathways in human ovarian cancer cell line OVCAR-3

  • Research Article
  • Published:
Tumor Biology

Abstract

Adenosine is a regulatory molecule with widespread physiological effects in almost every cells and acts as a potent regulator of cell growth. Adenosine has been shown to inhibit cell growth and induce apoptosis in the several cancer cells via caspase activation and Bcl-2/Bax pathway. The present study was designed to understand the mechanism underlying adenosine-induced apoptosis in the OVCAR-3 human ovarian cancer cells. MTT viability, BrdU and cell counting assays were used to study the cell proliferation effect of adenosine in presence of adenosine deaminase inhibitor and the nucleoside transporter inhibitor. Cell cycle analysis, propidium iodide and annexin V staining, caspase-3 activity assay, cyclinD1, Cdk4, Bcl-2 and Bax protein expressions were assessed to detect apoptosis. Adenosine significantly inhibited cell proliferation in a concentration-dependent manner in OVCAR-3 cell line. Adenosine induced cell cycle arrest in G0/G1 phase via Cdk4/cyclinD1-mediated pathway. Adenosine induced apoptosis, which was determined by Annexin V-FITC staining and increased sub-G1 population. Moreover, down-regulation of Bcl-2 protein expression, up-regulation of Bax protein expression and activation of caspase-3 were observed in response to adenosine treatment. The results of this study suggest that extracellular adenosine induced G1 cell cycle arrest and apoptosis in ovarian cancer cells via cyclinD1/ Cdk4 and Bcl-2/Bax pathways and caspase-3 activation. These data might suggest that adenosine could be used as an agent for the treatment of ovarian cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T, et al. Cancer statistics. CA Cancer J Clin. 2008;58:71–96.

    Article  PubMed  Google Scholar 

  2. Chien JR, Aletti G, Bell DA, Keeney GL, Shridhar V, Hartmann LC. Molecular pathogenesis and therapeutic targets in epithelial ovarian cancer. J Cell Biochem. 2007;102:117–29.

    Article  Google Scholar 

  3. Aletti GD, Gallenberg MM, Cliby WA, Jatoi A, Hartmann LC. Current management strategies for ovarian cancer. Mayo Clin Proc. 2007;82:751–70.

    PubMed  Google Scholar 

  4. Gessi S, Merighi S, Sacchetto V, Simioni C, Borea PA. Adenosine receptors and cancer. Biochim Biophys Acta. 2011;1808:1400–12.

    Article  PubMed  CAS  Google Scholar 

  5. Schneider C, Wiendl H, Ogilive A. Biophasic cytotoxic mechanism of extracellulat ATP on U-937 human histiocytic leukemia cells: involvement of adenosine generation. Biochim Biophys Acta. 2001;1538:190–205.

    Article  PubMed  CAS  Google Scholar 

  6. Di Iorio P, Kleywegt S, Ciccarelli R, Traversa U, Andrew CM, Crocker CE, et al. Mechanisms of apoptosis induced by purine nucleosides in astrocytes. Glia. 2002;38:179–90.

    Article  PubMed  Google Scholar 

  7. Panjehpour M, Karami-Tehrani F. Adenosine modulates cell growth in the human breast cancer cells via adenosine receptors. Oncol Res. 2007;16:575–85.

    Article  PubMed  CAS  Google Scholar 

  8. Gessi S, Merighi S, Varani K, Cattabriga E, Benini A, Mirandola P, et al. Adenosine receptors in colon carcinoma tissues and colon tumoral cell lines: focus on the A (3) adenosine subtype. J Cell Physiol. 2007;211:826–36.

    Article  PubMed  CAS  Google Scholar 

  9. Tanaka Y, Yoshihara K, Tsuyuki M, Kamiya T. Apoptosis induced by adenosine in human leukemia HL-60 cells. Exp Cell Res. 1994;213:242–52.

    Article  PubMed  CAS  Google Scholar 

  10. Merighi S, Mirandola P, Milani D, Varani K, Gessi S, Klotz KN, et al. Adenosine receptors as mediators of both cell proliferation and cell death of cultured human melanoma cells. J Invest Dermatol. 2002;119:923–33.

    Article  PubMed  CAS  Google Scholar 

  11. Hashemi M, Karami-Tehrani F, Ghavami S, Maddika S, Los M. Adenosine and deoxyadenosine induces apoptosis in oestrogen receptor-positive and -negative human breast cancer cells via the intrinsic pathway. Cell Prolif. 2005;38:269–85.

    Article  PubMed  CAS  Google Scholar 

  12. Salami S, Karami-Tehrani F. Biochemical studies of apoptosis induced by tamoxifen in estrogen receptor positive and negative breast cancer cell lines. Clin Biochem. 2003;36(4):247–53.

    Article  PubMed  CAS  Google Scholar 

  13. Aghaei M, Karami-Tehrani F, Salami S, Atri M. Diagnostic value of adenosine deaminase activity in benign and malignant breast tumors. Arch Med Res. 2009;41:14–8.

    Article  Google Scholar 

  14. Schorl C, Sedivy JM. Analysis of cell cycle phases and progression in cultured mammalian cells. Methods. 2007;41:143–50.

    Article  PubMed  CAS  Google Scholar 

  15. Ghavami S, Rashedi I, Dattilo BM, Eshraghi M, Chazin WJ, Hashemi M, et al. S100A8/A9 at low concentration promotes tumor cell growth via RAGE ligation and MAP-kinase dependent pathway. J Leukoc Biol. 2008;83:1484–92.

    Article  PubMed  CAS  Google Scholar 

  16. Nicoletti I, Migliorati G, Pagliacci MC, Grignani F, Riccardi C. A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. J Immunol Methods. 1991;139:271–9.

    Article  PubMed  CAS  Google Scholar 

  17. Ghavami S, Eshragi M, Ande SR, Chazin WJ, Klonisch T, Halayko AJ, et al. S100A8/A9 induces autophagy and apoptosis via ROS-mediated cross-talk between mitochondria and lysosomes that involves BNIP3. Cell Res. 2010;20:314–31.

    Article  PubMed  CAS  Google Scholar 

  18. Aghaei M, Panjehpour M, Karami-tehrani F, Salami S. Molecular mechanism of A3 adenosine receptor-induced G1 cell cycle arrest and apoptosis in androgen-dependent and independent prostate cancer cell lines: involvement of intrinsic pathway. J Cancer Res Clin Oncol. 2011;137:1511–23.

    Article  PubMed  CAS  Google Scholar 

  19. Ghavami S, Kerkhoff C, Los M, Hashemi M, Sorg C, Karami-Tehrani F. Mechanism of apoptosis induced by S100A8/A9 in colon cancer cell lines: the role of ROS and the effect of metal ions. J Leuk Biol. 2004;76:169–75.

    Article  CAS  Google Scholar 

  20. Fredholm BB, IJzerman AP, Jacobson KA, Klotz KN, Linden J. International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacol Rev. 2001;53:527–52.

    PubMed  CAS  Google Scholar 

  21. Fishman P, Yehuda SB, Ohana G, Pathak S, Wasserman L, Barer F, et al. Adenosine acts as an inhibitor of lymphoma cell growth: a major role for the A3 adenosine receptor. Euro J Cancer. 2000;36:1452–8.

    Article  CAS  Google Scholar 

  22. Aghaei M, Karami-Tehrani F, Panjehpour M, Salami S, Fallahian F. Adenosine induces cell-cycle arrest and apoptosis in androgen-dependent and -independent prostate cancer cell lines, LNcap-FGC-10, DU-145, and PC3. Prostate. 2012;72:361–75.

    Article  PubMed  CAS  Google Scholar 

  23. Kim SJ, Min HY, Chung HJ, Park EJ, Hong JY, Kang YJ, et al. Inhibition of cell proliferation through cell cycle arrest and apoptosis by thio-Cl-IB-MECA, a novel A3 adenosine receptor agonist, in human lung cancer cells. Cancer Lett. 2008;264:309–15.

    Article  PubMed  CAS  Google Scholar 

  24. Ohana G, Bar-Yehuda S, Barer F, Fishman P. Differential effect of adenosine on tumor and normal cell growth: focus on the A3 adenosine receptor. J Cell Physiol. 2001;186:19–23.

    Article  PubMed  CAS  Google Scholar 

  25. Meininger CJ, Schelling ME, Granger HJ. Adenosine and hypoxia stimulate proliferation and migration of endothelial cells. Am J Physiol. 1998;255:554–62.

    Google Scholar 

  26. Grant MB, Davis MI, Caballero S, Feoktistov I, Biaggioni I, Belardinelli L. Proliferation, migration, and ERK activation in human retinal endothelial cells through A(2B) adenosine receptor stimulation. Invest Ophthalmol Vis Sci. 2001;42:2068–73.

    PubMed  CAS  Google Scholar 

  27. Abbracchio MP, Camurri A, Ceruti S, Cattabeni F, Falzano L, Giammarioli AM, et al. The A3 adenosine receptor induces cytoskeleton rearrangement in human astrocytoma cells via a specific action on Rho proteins. Ann N Y Acad Sci. 2001;939:63–73.

    Article  PubMed  CAS  Google Scholar 

  28. Kohno Y, Sei Y, Koshiba M, Kim HO, Jacobson KA. Induction of apoptosis in HL-60 human promyelocytic leukemia cells by adenosine A(3) receptor agonists. Biochem Biophys Res Commun. 1996;219:904–10.

    Article  PubMed  CAS  Google Scholar 

  29. Cory S, Adams JM. The Bcl2 family: regulators of the cellular life-or-death switch. Nat Rev Cancer. 2002;2:647–56.

    Article  PubMed  CAS  Google Scholar 

  30. Appel E, Kazimirsky G, Ashkenazi E, Kim SG, Jacobson KA, Brodien C. Roles of BCL-2 and caspase 3 in the adenosine A3 receptor-induced apoptosis. J Mol Neurosci. 2001;17:285–92.

    Article  PubMed  CAS  Google Scholar 

  31. Wu LF, Li GP, Feng JL, Pu ZJ. Molecular mechanisms of adenosine-induced apoptosis in human HepG2 cells. Acta Pharmacol Sin. 2006;27:477–84.

    Article  PubMed  CAS  Google Scholar 

  32. Zhang YX, Yu SB, Ou-Yang JP, Xia D, Wang M, Li JR. Effect of protein kinase C alpha, caspase-3, and survivin on apoptosis of oral cancer cells induced by staurosporine. Acta Pharmacol Sin. 2005;26:1365–72.

    Article  PubMed  CAS  Google Scholar 

  33. Kang CM, Sun Y, Jang IS, Park SC. Thymidine-dependent attenuation of the mitochondrial apoptotic pathway in adenosine induced apoptosis of HL-60 cell. J Cancer Res Clin Oncol. 2001;12:570–6.

    Article  Google Scholar 

  34. Tai CJ, Chang SJ, Chien LY, Leung PC, Tzeng CR. Adenosine triphosphate induces activation of caspase-3 in apoptosis of human granulosa-luteal cells. Endocr J. 2005;52:327–35.

    Article  PubMed  CAS  Google Scholar 

  35. Saito M, Yaguchi T, Yasuda Y, Nakano T, Nishizaki T. Adenosine suppresses CW2 human colonic cancer growth by inducing apoptosis via A1 adenosine receptors. Cancer Lett. 2010;290:211–5.

    Article  PubMed  CAS  Google Scholar 

  36. Shieh DE, Chen YY, Yen MH, Chiang LC, Lin CC. Emodininduced apoptosis through p53-dependent pathway in human hepatoma cells. Life Sci. 2004;74:2279–90.

    Article  PubMed  CAS  Google Scholar 

  37. Dolle RE, Hoyer D, Prasad CV, Schmidt SJ, Helaszek CT, Miller RE, et al. P1 aspartate-based peptide alpha-((2,6-dichlorobenzoyl)oxy)methyl ketones as potent time-dependent inhibitors of interleukin-1 beta-converting enzyme. J Med Chem. 1994;37(5):563–4.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by a grant from Chalous Branch, Islamic Azad University, Chalous, Iran.

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud Aghaei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shirali, S., Aghaei, M., Shabani, M. et al. Adenosine induces cell cycle arrest and apoptosis via cyclinD1/Cdk4 and Bcl-2/Bax pathways in human ovarian cancer cell line OVCAR-3. Tumor Biol. 34, 1085–1095 (2013). https://doi.org/10.1007/s13277-013-0650-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-013-0650-1

Keywords

Navigation