Skip to main content

Advertisement

Log in

Dextran-functionalized magnetic fluid mediating magnetohyperthermia for treatment of Ehrlich-solid-tumor-bearing mice: toxicological and histopathological evaluations

  • Research Article
  • Published:
Tumor Biology

Abstract

Dextran-functionalized maghemite fluid (DexMF) has been tested to treat Ehrlich-solid-tumor-bearing mice, evidencing its potential use in mediating magnetohyperthermia in breast cancer treatment. However, although magnetic nanoparticles tend to accumulate in tumor tissues, part of the nanomaterial can reach the blood stream, and then the organism. The aim of this study was to investigate the acute systemic effects of the intratumoral injection of DexMF mediating magnetohyperthermia in the treatment of an advanced clinical Ehrlich-solid-tumor, assessed through histopathological analyses of liver, kidneys, heart and spleen, comet assay, micronucleus test, hemogram, and serum levels of bilirubin, aspartate aminotransferase, alanine aminotransferase, gamma glutamyl transferase, alkaline phosphatase, creatinine, and urea. The tumor’s histopathology and morphometry were used to assess its aggressiveness and regression. DexMF mediating hyperthermia was effective in containing tumor aggressiveness and in inducing tumor regression, besides showing no toxic effects. Its physical characteristics also suggest that it is safe to use in other biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. World Health Organization (WHO). Breast Cancer Awareness Month in October. http://www.who.int/cancer/events/breast_cancer_month/en/. Accessed April 22, 2013 2013.

  2. Weigelt B, Reis-Filho JS. Histological and molecular types of breast cancer: is there a unifying taxonomy? Nat Rev Clin Oncol. 2009;6(12):718–30.

    Article  CAS  PubMed  Google Scholar 

  3. Lopez-Garcia MA, Geyer FC, Lacroix-Triki M, Marchió C, Reis-Filho JS. Breast cancer precursors revisited: molecular features and progression pathways. Histopathology. 2010;57(2):171–92.

    Article  PubMed  Google Scholar 

  4. Dhankhar R, Vyas SP, Jain AK, Arora S, Rath G, Goyal AK. Advances in Novel Drug Delivery Strategies for Breast Cancer Therapy. Artif Cells Blood Substit Immobil Biotechnol. 2010;38(5):230–49. doi:10.3109/10731199.2010.494578.

    Article  CAS  PubMed  Google Scholar 

  5. Verrill M. Chemotherapy for early-stage breast cancer: a brief history. Br J Cancer. 2009;101(S1):S2–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Rastogi A. Nanooncology: The Breast Cancer Story. UTMJ. 2011;88(3):190–4.

    Google Scholar 

  7. Key TJ, Verkasalo PK, Banks E. Epidemiology of breast cancer. Lancet Oncol. 2001;2(3):133–40. doi:10.1016/s1470-2045(00)00254-0.

    Article  CAS  PubMed  Google Scholar 

  8. Carneiro MLB, Peixoto R, Joanitti G, Oliveira R, Telles L, Miranda-Vilela AL, et al. Antitumor effect and toxicity of free rhodium (II) citrate and rhodium (II) citrate-loaded maghemite nanoparticles in mice bearing breast cancer. J Nanobiotechnol. 2013;11(1):4.

    Article  CAS  Google Scholar 

  9. Miranda-Vilela AL, Peixoto RCA, Longo JPF, e Cintra DOS, Portilho FA, Miranda KLC, et al. Dextran-Functionalized Magnetic Fluid Mediating Magnetohyperthermia Combined with Preventive Antioxidant Pequi-Oil Supplementation: Potential Use Against Cancer. J Biomed Nanotechnol. 2013;9(7):1261–71. doi:10.1166/jbn.2013.1616.

    Article  CAS  PubMed  Google Scholar 

  10. Berry CC, Curtis ASG. Functionalisation of magnetic nanoparticles for applications in biomedicine. J Phys D Appl Phys. 2003;36:R198–206.

    Article  CAS  Google Scholar 

  11. Tartaj P, Morales MP, Veintemillas-Verdaguer S, González-Carreño T, Serna CJ. The preparation of magnetic nanoparticles for applications in biomedicine. J Phys D Appl Phys. 2003;36(13):R182.

    Article  CAS  Google Scholar 

  12. Ren C. Nanotechnology and the New Age of Cancer Treatment. The National High School Journal of Science. 2012. http://nhsjs.com/2012/nanotechnology-and-the-new-age-of-cancer-treatment. Accessed April 22 2013.

  13. O’Grady K. Biomedical applications of magnetic nanoparticles. J 703 Phys D: Appl Phys. 2002;36(13). doi:10.1088/0022-3727/36/13/701.

  14. Silva AC, Oliveira TR, Mamani JB, Malheiros SM, Malavolta L, Pavon LF, et al. Application of hyperthermia induced by superparamagnetic iron oxide nanoparticles in glioma treatment. Int J Nanomedicine. 2011;6:591–603.

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Portilho FA, Estevanato LLC, Miranda-Vilela AL, Almeida-Santos MFM, de Oliveira-Cavalcanti CE, Lacava BM, et al. Investigation of a magnetohyperthermia system efficacy. J Appl Phys. 2011;109:07B307.

    Article  Google Scholar 

  16. Sarfati G, Dvir T, Elkabets M, Apte RN, Cohen S. Targeting of polymeric nanoparticles to lung metastases by surface-attachment of YIGSR peptide from laminin. Biomaterials. 2011;32(1):152–61.

    Article  CAS  PubMed  Google Scholar 

  17. Tesniere A, Panaretakis T, Kepp O, Apetoh L, Ghiringhelli F, Zitvogel L, et al. Molecular characteristics of immunogenic cancer cell death. Cell Death Differ. 2007;15(1):3–12.

    Article  PubMed  Google Scholar 

  18. Arruebo M, Fernández-Pacheco R, Ibarra MR, Santamaría J. Magnetic nanoparticles for drug delivery. Nano Today. 2007;2(3):22–32. doi:10.1016/S1748-0132(07)70084-1.

    Article  Google Scholar 

  19. Oberdörster G, Oberdörster E, Oberdörster J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect. 2005;113(7):823–39.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Massart R. Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE Trans Magn. 1981;17(2):1247–8. doi:10.1109/tmag.1981.1061188.

    Article  Google Scholar 

  21. Miranda-Vilela AL, Portilho FA, de Araujo VG, Estevanato LL, Mezzomo BP, Almeida Santos MF, et al. The protective effects of nutritional antioxidant therapy on Ehrlich solid tumor-bearing mice depend on the type of antioxidant therapy chosen: histology, genotoxicity and hematology evaluations. J Nutr Biochem. 2011;22(11):1091–8. doi:10.1016/j.jnutbio.2010.09.009.

    Article  CAS  PubMed  Google Scholar 

  22. American Veterinary Medical Association (AVMA). AVMA Guidelines on Euthanasia. 2007. https://www.avma.org/KB/Policies/Documents/euthanasia.pdf. Accessed August 11, 2012.

  23. Yanase M, Shinkai M, Honda H, Wakabayashi T, Yoshida J, Kobayashi T. Intracellular hyperthermia for cancer using magnetite cationic liposomes: an in vivo study. Jpn J Cancer Res. 1998;89(4):463–9.

    Article  CAS  PubMed  Google Scholar 

  24. Singh N, McCoy M, Tice R, Scheneider E. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res. 1988;175:184–91.

    Article  CAS  PubMed  Google Scholar 

  25. Estevanato L, Cintra D, Baldini N, Portilho F, Barbosa L, Martins O, et al. Preliminary biocompatibility investigation of magnetic albumin nanosphere designed as a potential versatile drug delivery system. Int J Nanomedicine. 2011;6:1709–17. doi:10.2147/IJN.S21323.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Estevanato LL, Lacava LM, Carvalho LC, Azevedo RB, Silva O, Pelegrini F, et al. Long-term biodistribution and biocompatibility investigation of dextran-coated magnetite nanoparticle using mice as the animal model. J Biomed Nanotechnol. 2011;8(2):301–8.

    Article  Google Scholar 

  27. Mahmoudi M, Sant S, Wang B, Laurent S, Sen T. Superparamagnetic iron oxide nanoparticles (SPIONs): Development, surface modification and applications in chemotherapy. Adv Drug Deliv Rev. 2011;63(1–2):24–46. doi:10.1016/j.addr.2010.05.006.

    Article  CAS  PubMed  Google Scholar 

  28. Berry CC. Progress in functionalization of magnetic nanoparticles for applications in biomedicine. J Phys D Appl Phys. 2009;42(22):224003. 9pp.

    Article  Google Scholar 

  29. Nichols JW, Bae YH. Odyssey of a cancer nanoparticle: From injection site to site of action. Nano Today. 2012;7(6):606–18. doi:10.1016/j.nantod.2012.10.010.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Cho W-S, Thielbeer F, Duffin R, Johansson EMV, Megson IL, MacNee W et al. Surface functionalization affects the zeta potential, coronal stability and membranolytic activity of polymeric nanoparticles. Nanotoxicology. 2013; Ahead of Print:1–10. doi:10.3109/17435390.2013.773465.

  31. Patil S, Sandberg A, Heckert E, Self W, Seal S. Protein adsorption and cellular uptake of cerium oxide nanoparticles as a function of zeta potential. Biomaterials. 2007;28(31):4600–7. doi:10.1016/j.biomaterials.2007.07.029.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Souris JS, Lee C-H, Cheng S-H, Chen C-T, Yang C-S, Ho J-aA, et al. Surface charge-mediated rapid hepatobiliary excretion of mesoporous silica nanoparticles. Biomaterials. 2010;31(21):5564–74. doi:10.1016/j.biomaterials.2010.03.048.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Stewart HL, Snell KC, Dunham LJ, Schylen SM. Transplantable and Transmissible Tumors of Animals: Atlas of Tumor Pathology. Washington: Armed Fource Institute of Pathology; 1959.

    Google Scholar 

  34. Hughes GA. Nanostructure-mediated drug delivery. Nanomedicine. 2005;1(1):22–30.

    Article  CAS  PubMed  Google Scholar 

  35. Everds NE. Hematology of the Laboratory Mouse. In: Fox JG, Barthold SW, Davisson MT, Newcomer CE, Quimby FW, Smith AL, editors. The Mouse in Biomedical Research: Normative Biology, Husbandry, and Models. San Diego: Elsevier; 2007. p. 133–70.

    Chapter  Google Scholar 

  36. Mitruka BM, Rawnsley HM. Clinical, Biochemical and Haematological Reference Values in Normal Experimental Animals. New York: Masson Pub; 1977.

    Google Scholar 

  37. Viana FAB. Guia terapêutico veterinário. 2nd ed. Gráfica Editora Cem: Minas Gerais; 2007.

    Google Scholar 

  38. Organisation for Economic Co-operation and Development (OECD). OECD guideline for the testing of chemicals: Mammalian erythrocyte micronucleus test. 2012. http://www.oecd.org/env/ehs/testing/Draft%20TG%20474.pdf. Accessed May 04, 2013 2013.

  39. Quimby FW, Luong RH. Clinical Chemistry of the Laboratory Mouse. In: Fox JG, Barthold SW, Davisson MT, Newcomer CE, Quimby FW, Smith AL, editors. The Mouse in Biomedical Research: Normative Biology, Husbandry, and Models. San Diego: Elsevier; 2007. p. 171–216.

    Chapter  Google Scholar 

  40. Sutherland RJ. Biochemical evaluation of the hepatobiliary system in dogs and cats. Vet Clin N Am Small Anim Pract. 1989;19(5):899–927.

    CAS  Google Scholar 

  41. Thrall MA, Baker DC, Campbell TW, DeNicola D, Fettman MJ, Lassen ED, et al. Hematologia e Bioquímica Clínica Veterinária. 1st Edition ed. São Paulo: Editora Roca; 2007.

    Google Scholar 

  42. Miras-Parra FJ, Parra-Ruiz J, Gómez-Morales M, Gómez-Jiménez FJ, de la Higuera-Torres-Puchol J. Inflammatory Pseudotumor of Lymph Nodes with Focal Infiltration in Liver and Spleen. Dig Dis Sci. 2003;48(10):2003–4.

    Article  CAS  PubMed  Google Scholar 

  43. Goldberg DM. Structural, functional, and clinical aspects of gamma-glutamyltransferase. CRC Crit Rev Clin Lab Sci. 1980;12(1):1–58.

    Article  CAS  PubMed  Google Scholar 

  44. Whitfield JB. Gamma glutamyl transferase. Crit Rev Clin Lab Sci. 2001;38(4):263–355.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Sabin Institute/Sabin Laboratories for technical support in the biochemical dosages and the Brazilian National Council for Technological and Scientific Development (CNPq), the Foundation to Support Research in the Federal District (FAPDF), the Coordination for Further Training of Graduate Staff (CAPES), the CAPES-Rede CON-NANO, NCT-Nanobiotecnologia, and CNANO-UnB for financial support.

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ana Luisa Miranda-Vilela or Zulmira Guerrero Marques Lacava.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miranda-Vilela, A.L., Yamamoto, K.R., Miranda, K.L.C. et al. Dextran-functionalized magnetic fluid mediating magnetohyperthermia for treatment of Ehrlich-solid-tumor-bearing mice: toxicological and histopathological evaluations. Tumor Biol. 35, 3391–3403 (2014). https://doi.org/10.1007/s13277-013-1447-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-013-1447-y

Keywords

Navigation