Skip to main content
Log in

Association between SNPs in Serpin gene family and risk of esophageal squamous cell carcinoma

  • Research Article
  • Published:
Tumor Biology

Abstract

Esophageal squamous cell carcinoma (ESCC) is one of the most aggressive cancers in the world. Epidemiological survey studies have verified that the development of ESCC relates to a complex interactive process between multiple genetic susceptibilities and environmental exposure. Serpins are a broadly distributed family of protease inhibitors and have been recognized as tumor suppressors in multiple cancer types. While previous studies have reported that Serpin polymorphisms are associated with tumorigenesis, the genetic and functional single nucleotide polymorphisms (SNP) in these genes appear to be complex and remain to be elucidated. In this study, a total of 500 ESCC cases and 500 matched controls in a Southwest China population were evaluated for six SNPs in the exons of three Serpin genes (SerpinB5, SerpinB2, and SerpinE1). Among the six SNPs, the C allele of rs2289519 and rs2289520 in SerpinB5 showed decreased risk of ESCC and the variants might interact with smoking status. Haplotype analysis showed that the T-G haplotype (corresponding to rs2289519-rs2289520) increased the risk of ESCC, while the C-C haplotype decreased the risk. We also found that SerpinB5 gene mRNA expression was significantly downregulated in ESCC cell lines and patient specimen while there is no change in protein structure with different haplotypes. Our results demonstrated that the expression of SerpinB5 was downregulated in ESCC, and the positive SNPs might be associated with a risk of ESCC development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Stahl M, Budach W, Meyer HJ, Cervantes A. Esophageal cancer: clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2010;21 Suppl 5:v46–9.

    Article  PubMed  Google Scholar 

  2. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.

    Article  PubMed  Google Scholar 

  3. Lin Y, Totsuka Y, He Y, Kikuchi S, Qiao Y, Ueda J, et al. Epidemiology of esophageal cancer in Japan and China. J Epidemiol. 2013;23:233–42.

    Article  PubMed  Google Scholar 

  4. Chen W, He Y, Zheng R, Zhang S, Zeng H, Zou X, et al. Esophageal cancer incidence and mortality in China, 2009. J Thorac Dis. 2013;5:19–26.

    PubMed  PubMed Central  Google Scholar 

  5. Silverman GA, Bird PI, Carrell RW, Church FC, Coughlin PB, Gettins PG, et al. The serpins are an expanding superfamily of structurally similar but functionally diverse proteins. Evolution, mechanism of inhibition, novel functions, and a revised nomenclature. J Biol Chem. 2001;276:33293–6.

    Article  CAS  PubMed  Google Scholar 

  6. Potempa J, Korzus E, Travis J. The serpin superfamily of proteinase inhibitors: structure, function, and regulation. J Biol Chem. 1994;269:15957–60.

    CAS  PubMed  Google Scholar 

  7. Cao D, Zhang Q, Wu LS, Salaria SN, Winter JW, Hruban RH, et al. Prognostic significance of maspin in pancreatic ductal adenocarcinoma: tissue microarray analysis of 223 surgically resected cases. Mod Pathol. 2007;20:570–8.

    Article  CAS  PubMed  Google Scholar 

  8. Vecchi M, Confalonieri S, Nuciforo P, Vigano MA, Capra M, Bianchi M, et al. Breast cancer metastases are molecularly distinct from their primary tumors. Oncogene. 2008;27:2148–58.

    Article  CAS  PubMed  Google Scholar 

  9. Jing Y, Kovacs K, Kurisetty V, Jiang Z, Tsinoremas N, Merchan JR. Role of plasminogen activator inhibitor-1 in urokinase’s paradoxical in vivo tumor suppressing or promoting effects. Mol Cancer Res. 2012;10:1271–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Klein RM, Bernstein D, Higgins SP, Higgins CE, Higgins PJ. Serpine1 expression discriminates site-specific metastasis in human melanoma. Exp Dermatol. 2012;21:551–4.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ozaki K, Nagata M, Suzuki M, Fujiwara T, Miyoshi Y, Ishikawa O, et al. Isolation and characterization of a novel human pancreas-specific gene, pancpin, that is down-regulated in pancreatic cancer cells. Genes Chromosomes Cancer. 1998;22:179–85.

    Article  CAS  PubMed  Google Scholar 

  12. Takahashi Y, Mimori K, Mori M. Significance of genome-wide association study in cancer. Nihon Geka Gakkai Zasshi. 2012;113:210–4.

    PubMed  Google Scholar 

  13. Wang K, Guo H, Hu H, Xiong G, Guan X, Li J, et al. A functional variation in pre-microrna-196a is associated with susceptibility of esophageal squamous cell carcinoma risk in Chinese Han. Biomarkers. 2010;15:614–8.

    Article  CAS  PubMed  Google Scholar 

  14. Southam L, Rodriguez-Lopez J, Wilkins JM, Pombo-Suarez M, Snelling S, Gomez-Reino JJ, et al. An snp in the 5'-UTR of GDF5 is associated with osteoarthritis susceptibility in Europeans and with in vivo differences in allelic expression in articular cartilage. Hum Mol Genet. 2007;16:2226–32.

    Article  CAS  PubMed  Google Scholar 

  15. Chapman K, Takahashi A, Meulenbelt I, Watson C, Rodriguez-Lopez J, Egli R, et al. A meta-analysis of European and Asian cohorts reveals a global role of a functional SNP in the 5' UTR of GDF5 with osteoarthritis susceptibility. Hum Mol Genet. 2008;17:1497–504.

    Article  CAS  PubMed  Google Scholar 

  16. Smits KM, Paranjape T, Nallur S, Wouters KA, Weijenberg MP, Schouten LJ, et al. A let-7 microRNA SNP in the KRAS 3'UTR is prognostic in early-stage colorectal cancer. Clin Cancer Res. 2011;17:7723–31.

    Article  CAS  PubMed  Google Scholar 

  17. Zhang L, Liu Y, Song F, Zheng H, Hu L, Lu H, et al. Functional SNP in the microRNA-367 binding site in the 3'UTR of the calcium channel ryanodine receptor gene 3 (RYR3) affects breast cancer risk and calcification. Proc Natl Acad Sci U S A. 2011;108:13653–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang K, Li J, Guo H, Xu X, Xiong G, Guan X, et al. Mir-196a binding-site SNP regulates RAP1A expression contributing to esophageal squamous cell carcinoma risk and metastasis. Carcinogenesis. 2012;33:2147–54.

    Article  CAS  PubMed  Google Scholar 

  19. Wang K, Liu B, Li J, Xiong G, Guan X, Yang K, et al. Association between SNPs in P53 binding regions and risk of esophageal squamous cell carcinoma. Int J Biol Markers. 2014;29:e160–8.

    Article  CAS  PubMed  Google Scholar 

  20. Wang JM, Xu B, Rao JY, Shen HB, Xue HC, Jiang QW. Diet habits, alcohol drinking, tobacco smoking, green tea drinking, and the risk of esophageal squamous cell carcinoma in the Chinese population. Eur J Gastroenterol Hepatol. 2007;19:171–6.

    Article  CAS  PubMed  Google Scholar 

  21. Enzinger PC, Mayer RJ. Esophageal cancer. N Engl J Med. 2003;349:2241–52.

    Article  CAS  PubMed  Google Scholar 

  22. Hong Y, Miao X, Zhang X, Ding F, Luo A, Guo Y, et al. The role of P53 and MDM2 polymorphisms in the risk of esophageal squamous cell carcinoma. Cancer Res. 2005;65:9582–7.

    Article  CAS  PubMed  Google Scholar 

  23. Shao LJ, Shi HY, Ayala G, Rowley D, Zhang M. Haploinsufficiency of the maspin tumor suppressor gene leads to hyperplastic lesions in prostate. Cancer Res. 2008;68:5143–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bass R, Fernandez AM, Ellis V. Maspin inhibits cell migration in the absence of protease inhibitory activity. J Biol Chem. 2002;277:46845–8.

    Article  CAS  PubMed  Google Scholar 

  25. Abraham S, Zhang W, Greenberg N, Zhang M. Maspin functions as tumor suppressor by increasing cell adhesion to extracellular matrix in prostate tumor cells. J Urol. 2003;169:1157–61.

    Article  CAS  PubMed  Google Scholar 

  26. Jiang N, Meng Y, Zhang S, Mensah-Osman E, Sheng S. Maspin sensitizes breast carcinoma cells to induced apoptosis. Oncogene. 2002;21:4089–98.

    Article  CAS  PubMed  Google Scholar 

  27. Zhang M, Volpert O, Shi YH, Bouck N. Maspin is an angiogenesis inhibitor. Nat Med. 2000;6:196–9.

    Article  PubMed  Google Scholar 

  28. Machtens S, Serth J, Bokemeyer C, Bathke W, Minssen A, Kollmannsberger C, et al. Expression of the p53 and maspin protein in primary prostate cancer: correlation with clinical features. Int J Cancer. 2001;95:337–42.

    Article  CAS  PubMed  Google Scholar 

  29. Shams TM, Samaka RM, Shams ME. Maspin protein expression: a special feature of papillary thyroid carcinoma. J Egypt Natl Canc Inst. 2006;18:274–80.

    PubMed  Google Scholar 

  30. Kim S, Han J, Kim J, Park C. Maspin expression is transactivated by p63 and is critical for the modulation of lung cancer progression. Cancer Res. 2004;64:6900–5.

    Article  CAS  PubMed  Google Scholar 

  31. Wang Y, Sheng S, Zhang J, Dzinic S, Li S, Fang F, et al. Elevated maspin expression is associated with better overall survival in esophageal squamous cell carcinoma (ESCC). PLoS One. 2013;8:e63581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bieche I, Girault I, Sabourin JC, Tozlu S, Driouch K, Vidaud M, et al. Prognostic value of maspin mRNA expression in ER alpha-positive postmenopausal breast carcinomas. Br J Cancer. 2003;88:863–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Umekita Y, Ohi Y, Sagara Y, Yoshida H. Expression of maspin predicts poor prognosis in breast-cancer patients. Int J Cancer. 2002;100:452–5.

    Article  CAS  PubMed  Google Scholar 

  34. Sood AK, Fletcher MS, Gruman LM, Coffin JE, Jabbari S, Khalkhali-Ellis Z, et al. The paradoxical expression of maspin in ovarian carcinoma. Clin Cancer Res. 2002;8:2924–32.

    CAS  PubMed  Google Scholar 

  35. Pfeifer GP, Denissenko MF, Olivier M, Tretyakova N, Hecht SS, Hainaut P. Tobacco smoke carcinogens, DNA damage and p53 mutations in smoking-associated cancers. Oncogene. 2002;21:7435–51.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (No. 31100936).

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kai Wang or Yun Bai.

Additional information

Hui Meng and Xingying Guan contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table 1

(DOC 64 kb)

Supplementary Table 2

(DOC 28 kb)

Supplementary Table 3

(DOC 37 kb)

Supplementary Figure 1

(DOC 167 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, H., Guan, X., Guo, H. et al. Association between SNPs in Serpin gene family and risk of esophageal squamous cell carcinoma. Tumor Biol. 36, 6231–6238 (2015). https://doi.org/10.1007/s13277-015-3308-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-3308-3

Keywords

Navigation