Skip to main content

Advertisement

Log in

Delivery of miR-155 to retinal pigment epithelial cells mediated by Burkitt’s lymphoma exosomes

  • Original Article
  • Published:
Tumor Biology

Abstract

Exosomes are extracellularly secreted vesicles ranging from 40 to 100 nm in diameter that are thought to play important roles in intercellular communication. Exosomes contain numerous proteins, RNA, and lipids that can affect the status of recipient cells under various pathological conditions. MicroRNAs (miRNAs) are small non-coding RNAs that play a major role in post-transcriptional gene silencing by interacting with the 3′-untranslated regions of target genes. Epstein-Barr virus (EBV) has been reported to induce sustained elevation of cellular miRNAs such as miR-155. We hypothesized that miRNAs delivered by exosomes might affect the angiogenesis of retinal pigment epithelial (RPE) cells. Here, we demonstrated that co-culture of EBV-positive Burkitt’s lymphoma (BL) cells (Raji) with retinal pigment epithelial (ARPE-19) cells increased the level of miR-155 in recipient cells whereas no major difference was detected for co-culture with EBV-negative BL cells (Ramos). Isolated Raji exosomes increased transcriptional and translational levels of VEGF-A in ARPE-19 cells, which was reversely correlated with von Hippel-Lindau expression. A human umbilical vein endothelial cell tube formation assay showed that delivery of ectopic miR-155 rendered ARPE-19 cells proangiogenic. Our results demonstrate that sustained accumulation of miR-155 mediated by exosomes might affect remote recipient cells such as retinal pigment epithelial cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

miR:

MicroRNA

EBV:

Epstein-Barr virus

miR-155:

miRNA-155

References

  1. Mathivanan S, Ji H, Simpson RJ. Exosomes: extracellular organelles important in intercellular communication. J Proteome. 2010;73:1907–20.

    Article  CAS  Google Scholar 

  2. Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol. 2013;200:373–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Thery C, Boussac M, Veron P, Ricciardi-Castagnoli P, Raposo G, Garin J, et al. Proteomic analysis of dendritic cell-derived exosomes: a secreted subcellular compartment distinct from apoptotic vesicles. J Immunol. 2001;166:7309–18.

    Article  CAS  PubMed  Google Scholar 

  4. Xie Y, Bai O, Zhang H, Yuan J, Zong S, Chibbar R, et al. Membrane-bound hsp70-engineered myeloma cell-derived exosomes stimulate more efficient cd8(+) ctl- and nk-mediated antitumour immunity than exosomes released from heat-shocked tumour cells expressing cytoplasmic hsp70. J Cell Mol Med. 2010;14:2655–66.

    Article  CAS  PubMed  Google Scholar 

  5. Laulagnier K, Vincent-Schneider H, Hamdi S, Subra C, Lankar D, Record M. Characterization of exosome subpopulations from rbl-2h3 cells using fluorescent lipids. Blood Cells Mol Dis. 2005;35:116–21.

    Article  CAS  PubMed  Google Scholar 

  6. Mazurov D, Barbashova L, Filatov A. Tetraspanin protein cd9 interacts with metalloprotease cd10 and enhances its release via exosomes. FEBS J. 2013;280:1200–13.

    Article  CAS  PubMed  Google Scholar 

  7. Mulcahy LA, Pink RC, Carter DR. Routes and mechanisms of extracellular vesicle uptake. J Extracell Vesicles. 2014;3.

  8. Zhang J, Li S, Li L, Li M, Guo C, Yao J, et al. Exosome and exosomal microrna: trafficking, sorting, and function. Genomics Proteomics Bioinformatics. 2015;13:17–24.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Pant S, Hilton H, Burczynski ME. The multifaceted exosome: biogenesis, role in normal and aberrant cellular function, and frontiers for pharmacological and biomarker opportunities. Biochem Pharmacol. 2012;83:1484–94.

    Article  CAS  PubMed  Google Scholar 

  10. Wilczynska A, Bushell M. The complexity of mirna-mediated repression. Cell Death Differ. 2015;22:22–33.

    Article  CAS  PubMed  Google Scholar 

  11. Lu F, Weidmer A, Liu CG, Volinia S, Croce CM, Lieberman PM. Epstein-barr virus-induced mir-155 attenuates nf-kappab signaling and stabilizes latent virus persistence. J Virol. 2008;82:10436–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gatto G, Rossi A, Rossi D, Kroening S, Bonatti S, Mallardo M. Epstein-barr virus latent membrane protein 1 trans-activates mir-155 transcription through the nf-kappab pathway. Nucleic Acids Res. 2008;36:6608–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kutty RK, Nagineni CN, Samuel W, Vijayasarathy C, Hooks JJ, Redmond TM. Inflammatory cytokines regulate microrna-155 expression in human retinal pigment epithelial cells by activating jak/stat pathway. Biochem Biophys Res Commun. 2010;402:390–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kong W, He L, Richards EJ, Challa S, Xu CX, Permuth-Wey J, et al. Upregulation of mirna-155 promotes tumour angiogenesis by targeting vhl and is associated with poor prognosis and triple-negative breast cancer. Oncogene. 2014;33:679–89.

    Article  CAS  PubMed  Google Scholar 

  15. Xiao H, Gu Z, Wang G, Zhao T. The possible mechanisms underlying the impairment of hif-1alpha pathway signaling in hyperglycemia and the beneficial effects of certain therapies. Int J Med Sci. 2013;10:1412–21.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Shtam TA, Kovalev RA, Varfolomeeva EY, Makarov EM, Kil YV, Filatov MV. Exosomes are natural carriers of exogenous sirna to human cells in vitro. Cell Commun Signal. 2013;11:88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kluiver J, Poppema S, de Jong D, Blokzijl T, Harms G, Jacobs S, et al. Bic and mir-155 are highly expressed in hodgkin, primary mediastinal and diffuse large b cell lymphomas. J Pathol. 2005;207:243–9.

    Article  CAS  PubMed  Google Scholar 

  18. Tam W, Dahlberg JE. Mir-155/bic as an oncogenic microrna. Genes Chromosomes Cancer. 2006;45:211–2.

    Article  CAS  PubMed  Google Scholar 

  19. Kluiver J, Haralambieva E, de Jong D, Blokzijl T, Jacobs S, Kroesen BJ, et al. Lack of bic and microrna mir-155 expression in primary cases of burkitt lymphoma. Genes Chromosomes Cancer. 2006;45:147–53.

    Article  CAS  PubMed  Google Scholar 

  20. Iqbal J, Shen Y, Huang X, Liu Y, Wake L, Liu C, et al. Global microrna expression profiling uncovers molecular markers for classification and prognosis in aggressive b-cell lymphoma. Blood. 2015;125:1137–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rahadiani N, Takakuwa T, Tresnasari K, Morii E, Aozasa K. Latent membrane protein-1 of epstein-barr virus induces the expression of b-cell integration cluster, a precursor form of microrna-155, in b lymphoma cell lines. Biochem Biophys Res Commun. 2008;377:579–83.

    Article  CAS  PubMed  Google Scholar 

  22. Snell CE, Turley H, McIntyre A, Li D, Masiero M, Schofield CJ, et al. Proline-hydroxylated hypoxia-inducible factor 1alpha (hif-1alpha) upregulation in human tumours. PLoS One. 2014;9, e88955.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Min JH, Yang H, Ivan M, Gertler F, Kaelin Jr WG, Pavletich NP. Structure of an hif-1alpha -pvhl complex: hydroxyproline recognition in signaling. Science. 2002;296:1886–9.

    Article  CAS  PubMed  Google Scholar 

  24. Neal CS, Michael MZ, Rawlings LH, Van der Hoek MB, Gleadle JM. The vhl-dependent regulation of micrornas in renal cancer. BMC Med. 2010;8:64.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Maxwell PH, Wiesener MS, Chang GW, Clifford SC, Vaux EC, Cockman ME, et al. The tumour suppressor protein vhl targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature. 1999;399:271–5.

    Article  CAS  PubMed  Google Scholar 

  26. Hon WC, Wilson MI, Harlos K, Claridge TD, Schofield CJ, Pugh CW, et al. Structural basis for the recognition of hydroxyproline in hif-1 alpha by pvhl. Nature. 2002;417:975–8.

    Article  CAS  PubMed  Google Scholar 

  27. Baldewijns MM, van Vlodrop IJ, Vermeulen PB, Soetekouw PM, van Engeland M, de Bruine AP. Vhl and hif signalling in renal cell carcinogenesis. J Pathol. 2010;221:125–38.

    Article  CAS  PubMed  Google Scholar 

  28. Czyzyk-Krzeska MF, Zhang X. Mir-155 at the heart of oncogenic pathways. Oncogene. 2014;33:677–8.

    Article  CAS  PubMed  Google Scholar 

  29. de Jong PT. Age-related macular degeneration. N Engl J Med. 2006;355:1474–85.

    Article  PubMed  Google Scholar 

  30. Topouzis F, Anastasopoulos E, Augood C, Bentham GC, Chakravarthy U, de Jong PT, et al. Association of diabetes with age-related macular degeneration in the EUREYE study. Br J Ophthalmol. 2009;93:1037–41.

    Article  CAS  PubMed  Google Scholar 

  31. Hong GK, Kumar P, Wang PL, Damania B, Gulley ML, Delecluse HJ, et al. Epstein-Barr virus lytic infection is required for efficient production of the angiogenesis factor vascular endothelial growth factor in lymphoblastoid cell lines. J Virol. 2005;79:13984–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jones RJ, Seaman WT, Feng WT, Barlow E, Dickerson S, Delecluse HJ, et al. Roles of lytic viral infection and IL-6 in early versus late passage lymphoblastoid cell lines and EBV-associated lymphoproliferative disease. Int J Cancer. 2007;121:1274–81.

    Article  CAS  PubMed  Google Scholar 

  33. Slobod KS, Sandlund JT, Spiegel PH, Haik B, Hurwitz JL, Conley ME, et al. Molecular evidence of ocular Epstein-Barr virus infection. Clin Infect Dis. 2000;31:184–8.

    Article  CAS  PubMed  Google Scholar 

  34. Meckes Jr DG, Gunawardena HP, Dekroon RM, Heaton PR, Edwards RH, Ozgur S, et al. Modulation of B-cell exosome proteins by gamma herpesvirus infection. Proc Natl Acad Sci U S A. 2013;110:E2925–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Andrade TA, Evangelista AF, Campos AH, Poles WA, Borges NM, Camillo CM, et al. A microRNA signature profile in EBV+ diffuse large B-cell lymphoma of the elderly. Oncotarget. 2014;5:11813–26.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Urbich C, Kuehbacher A, Dimmeler S. Role of microRNAs in vascular diseases, inflammation, and angiogenesis. Cardiovasc Res. 2008;79:581–8.

    Article  CAS  PubMed  Google Scholar 

  37. Fish JE, Santoro MM, Morton SU, Yu S, Yeh RF, Wythe JD, et al. miR-126 regulates angiogenic signaling and vascular integrity. Dev Cell. 2008;15:272–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yoon C, Kim D, Kim S, Park GB, Hur DY, Yang JW, et al. Mir-9 regulates the post-transcriptional level of vegf165a by targeting srpk-1 in arpe-19 cells. Graefe's Arch Clin Exp Ophthal. 2014;252:1369–76.

    Article  CAS  Google Scholar 

  39. Kelly TJ, Souza AL, Clish CB, Puigserver P. A hypoxia-induced positive feedback loop promotes hypoxia-inducible factor 1alpha stability through mir-210 suppression of glycerol-3-phosphate dehydrogenase 1-like. Mol Cell Biol. 2011;31:2696–706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ma L, Young J, Prabhala H, Pan E, Mestdagh P, Muth D, et al. Mir-9, a myc/mycn-activated microrna, regulates e-cadherin and cancer metastasis. Nat Cell Biol. 2010;12:247–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Coolen M, Katz S, Bally-Cuif L. Mir-9: a versatile regulator of neurogenesis. Front Cell Neurosci. 2013;7:220.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Thiele S, Wittmann J, Jack HM, Pahl A. Mir-9 enhances il-2 production in activated human cd4(+) t cells by repressing blimp-1. Eur J Immunol. 2012;42:2100–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIP) (R13-2007-023-00000-0) and Basic Science Research Program through NRF funded by the Ministry of Education (NRF-2012R1A1A2006909).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yeong Seok Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoon, C., Kim, J., Park, G. et al. Delivery of miR-155 to retinal pigment epithelial cells mediated by Burkitt’s lymphoma exosomes. Tumor Biol. 37, 313–321 (2016). https://doi.org/10.1007/s13277-015-3769-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-3769-4

Keywords

Navigation