Skip to main content
Log in

Treelines Will be Understood Once the Functional Difference Between a Tree and a Shrub Is

  • Published:
AMBIO Aims and scope Submit manuscript

Abstract

Trees are taller than shrubs, grasses, and herbs. What is the disadvantage of being tall so that trees are restricted to warmer regions than low stature life forms? This article offers a brief review of the current state of biological treeline theory, and then explores the significance of tallness from a carbon balance, freezing resistance, and microclimatological perspective. It will be argued that having of a woody stem is neither a burden to the carbon balance nor does it add to the risk of freezing damage. The physiological means of trees to thrive in cold climates are similar to small stature plants, but due to their size, and, thus, closer aerodynamic coupling to air circulation, trees experience critically low temperatures at lower elevation and latitude than smaller plants. Hence, trees reach a limit at treeline for physical reasons related to their stature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alvarez-Uria, P., and C. Körner. 2007. Low temperature limits of root growth in deciduous and evergreen temperate tree species. Functional Ecology 21: 211–218.

    Article  Google Scholar 

  • Bernoulli, M., and C. Körner. 1999. Dry matter allocation in treeline trees. Phyton 39: 7–12.

    Google Scholar 

  • Björklund, L. 1999. Identifying heartwood-rich stands or stems of Pinus sylvestris by using inventory data. Silva Fennica 33: 119–129.

    Google Scholar 

  • Bosshard, H.H. 1984. Holzkunde, vol. II. Basel: Birkhäuser.

    Google Scholar 

  • Callaghan, T.V., R.M.M. Crawford, M. Eronen, A. Hofgaard, S. Payette, W.G. Rees, O. Skre, B. Sveinbjörnsson, et al. 2002. The dynamics of the tundra-taiga boundary: An overview and suggested coordinated and integrated approach to research. AMBIO 12: 3–5.

    Google Scholar 

  • Germino, M.J., and W.K. Smith. 1999. Sky exposure, crown architecture, and low-temperature photoinhibition in conifer seedlings at alpine treeline. Plant, Cell and Environment 22: 407–415.

    Article  Google Scholar 

  • Gervais, B.R., and G.M. MacDonald. 2000. A 403-year record of July temperatures and treeline dynamics of Pinus sylvestris from the Kola Peninsula, northwest Russia. Arctic, Antarctic, and Alpine Research 32: 295–302.

    Article  Google Scholar 

  • Gould, P.J., and C.A. Harrington. 2008. Extending sapwood—Leaf area relationships from stems to roots in Coast Douglas-fir. Annals of Forest Science. doi:10.1051/forest:2008067.

  • Grace, J. 1988. The functional significance of short stature in montane vegetation. In Plant form and vegetation structure, ed. M.J.A. Werger, P.J.M. Van der Aart, H.J. During, and J.T.A. Verhoeven, 201–209. The Hague: SPB Academic Publishing.

    Google Scholar 

  • Grace, J., S.J. Allen, and C. Wilson. 1989. Climate and the meristem temperatures of plant communities near the tree-lines. Oecologia 79: 198–204.

    Article  Google Scholar 

  • Harsch, M.A., P.E. Hulme, M.S. McGlone, and R.P. Duncan. 2009. Are treelines advancing? A global meta-analysis of treeline response to climate warming. Ecology Letters 12: 1040–1049.

    Article  Google Scholar 

  • Hijmans, R.J., S.E. Cameron, J.L. Parra, P.G. Jones, and A. Jarvis. 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25: 1965–1978.

    Article  Google Scholar 

  • Hoch, G., and C. Körner. 2003. The carbon charging of pines at the climatic treeline: A global comparison. Oecologia 135: 10–21.

    Google Scholar 

  • Hoch, G., and C. Körner. 2011. Global patterns of mobile carbon stores in trees at high elevation treeline. Global Ecology and Biogeography. doi:10.1111/j.1466-8238.2011.00731.x.

  • Hoch, G., A. Richter, and C. Körner. 2003. Non-structural carbohydrates in temperate forest trees. Plant Cell Environ 26: 1067–1081.

    Google Scholar 

  • Holtmeier, F.-K. 2009. Mountain timberlines. Ecology, patchiness, and dynamics. Berlin: Springer.

    Google Scholar 

  • Huber, B., and G. Prütz. 1938. Über den Anteil von Fasern, Gefässen und Parenchym am Aufbau verschiedener Hölzer. Holz als Roh- und Werkstoff 1: 377–381.

    Article  Google Scholar 

  • Knapic, S., and H. Pereira. 2005. Within-tree variation of heartwood and ring width in maritime pine (Pinus pinaster Ait.). Forest Ecology and Management 210: 81–89.

    Article  Google Scholar 

  • Körner, C. 1994. Biomass fractionation in plants: A reconsideration of definitions based on plant functions. In A whole plant perspective on carbon–nitrogen interactions, ed. J. Roy, and E. Garnier, 173–185. The Hague: SPB Academic Publishing.

    Google Scholar 

  • Körner, C. 1999. Alpine plants: Stressed or adapted? In Physiological plant ecology, ed. M.C. Press, J.D. Scholes, and M.G. Barker, 297–311. Oxford: Blackwell.

    Google Scholar 

  • Körner, C. 2003. Alpine plant life. Berlin: Springer.

    Book  Google Scholar 

  • Körner, C. 2007. Climatic treelines: Conventions, global patterns, causes. Erdkunde 61: 315–324.

    Article  Google Scholar 

  • Körner, C. 2008. Winter crop growth at low temperature may hold the answer for alpine treeline formation. Plant Ecology and Diversity 1: 3–11.

    Article  Google Scholar 

  • Körner, C. 2012. Alpine treelines. Basel: Springer.

    Book  Google Scholar 

  • Körner, C., and J. Paulsen. 2004. A world-wide study of high altitude treeline temperatures. Journal of Biogeography 31: 713–732.

    Article  Google Scholar 

  • Körner, C., J. Paulsen, and E.M. Spehn. 2011. A definition of mountains and their bioclimatic belts for global comparison of biodiversity data. Alpine Botany 121: 73–78.

    Google Scholar 

  • Kullman, L. 1990. Dynamics of altitudinal tree-limits in Sweden: A review. Norsk Geologisk Tidsskrift 44: 103–116.

    Article  Google Scholar 

  • Kullman, L. 2007. Tree line population monitoring of Pinus sylvestris in the Swedish Scandes, 1973–2005: Implications for tree line theory and climate change ecology. Journal of Ecology 95: 41–52.

    Article  Google Scholar 

  • Larcher, W. 1985. Winter stress in high mountains. In Establishment and tending of subalpine forest: Research and management, ed. H. Turner, and W. Tranquillini. Berichte der Eidgenössischen Anstalt für das forstliche Versuchswesen 270: 11–20.

  • Matyssek, R. 1985. Der Kohlenstoff-, Wasser-, und Nahrstoffhaushalt der wechselgrünen und immergrünen Koniferen Lärche, Fichte, Kiefer. PhD thesis. Bayreuth, Germany: University of Bayreuth.

  • Matyssek, R., G. Wieser, K. Patzner, H. Blaschke, and K.H. Haberle. 2009. Transpiration of forest trees and stands at different altitude: Consistencies rather than contrasts? European Journal of Forest Research 128: 579–596.

    Article  Google Scholar 

  • Mayr, S. 2007. Limits in water relations. In Trees at their upper limit, ed. G. Wieser, and M. Tausz, 145–162. Berlin: Springer.

    Chapter  Google Scholar 

  • Münster-Swendsen, M. 1987. Index of vigour in Norway spruce (Picea abies Karst.). Journal of Applied Ecology 24: 551–561.

    Article  Google Scholar 

  • Oren, R., E.-D. Schulze, R. Matyssek, and R. Zimmermann. 1986. Estimating photosynthetic rate and annual carbon gain in conifers from specific leaf weight and leaf biomass. Oecologia 70: 187–193.

    Article  Google Scholar 

  • Paulsen, J., U.M. Weber, and C. Körner. 2000. Tree growth near treeline: Abrupt or gradual reduction with altitude? Arctic, Antarctic, and Alpine Research 32: 14–20.

    Article  Google Scholar 

  • Rossi, S., A. Desauriers, T. Anfodillo, and V. Carraro. 2007. Evidence of threshold temperatures for xylogenesis in conifers at high altitudes. Oecologia 152: 1–12.

    Article  Google Scholar 

  • Sakai, A., and W. Larcher. 1987. Frost survival of plants. Responses and adaptation. Ecological Studies 62. Berlin: Springer.

  • Sakai, A., and S. Okada. 1971. Freezing resistance of conifers. Silvae Genetica 20: 91–97.

    Google Scholar 

  • Sala, A., W. Fouts, and G. Hoch. 2011. Carbon storage in trees: Does relative carbon supply decrease with tree size? In Size- and age-related changes in tree structure and function (Tree Physiology 4), ed. F. C. Meinzer, B. Lachenbruch and T. E. Dawson, 287–306. Berlin: Springer. doi:10.1007/978-94-007-1242_11.

  • Schönenberger, W. 2001. Cluster afforestation for creating diverse mountain forest structures—A review. Forest Ecology and Management 145: 121–128.

    Article  Google Scholar 

  • Schulze, E.-D., J. Cermak, R. Matyssek, M. Penka, R. Zimmermann, F. Vasicek, W. Gries, and J. Kucera. 1985. Canopy transpiration and water fluxes in the xylem of the trunk of Larix and Picea trees—A comparison of xylem flow, porometer and cuvette measurements. Oecologia 66: 475–483.

    Article  Google Scholar 

  • Sellin, A. 1994. Sapwood-heartwood proportion related to tree diameter, age and growth rate in Picea abies. Canadian Journal of Forest Research 24: 1022–1028.

    Article  Google Scholar 

  • Smith, W.K., M.J. Germino, T.E. Hancock, and D.M. Johnson. 2003. Another perspective on altitudinal limits of alpine timberlines. Tree Physiology 23: 1101–1112.

    Article  Google Scholar 

  • Squeo, A., F. Rada, A. Azocar, and G. Goldstein. 1991. Freezing tolerance and avoidance in high tropical Andean plants: Is it equally represented in species with different plant height? Oecologia 86: 378–382.

    Article  Google Scholar 

  • Sterck, F.J., R. Zweifel, U. Sass-Klaassen, and Q. Chowdhury. 2008. Persisting soil drought reduces leaf specific conductivity in Scots pine (Pinus sylvestris) and pubescent oak (Quercus pubescent). Tree Physiology 28: 529–536.

    Article  Google Scholar 

  • Stöcklin, J., and C. Körner. 1999. Recruitment and mortality of Pinus sylvestris near the nordic treeline: The role of climatic change and herbivory. Ecological Bulletins 47: 168–177.

    Google Scholar 

  • Sveinbjörnsson, B., A. Hofgaard, and A. Lloyd. 2002. Natural causes of the tundra-taiga boundary. AMBIO 12: 23–29.

    Google Scholar 

  • Tranquillini, W. 1979. Physiological ecology of the Alpine Timberline. Tree existence at high altitudes with special references to the European Alps. Ecological Studies 31. Berlin: Springer.

  • Troll, C. 1973. The upper timberlines in different climatic zones. Arctic and Alpine Research 5: A3–A18.

    Google Scholar 

  • von Humboldt, A., and A. Bonpland. 1807. Ideen zu einer Geographie der Pflanzen nebst einem Naturgemälde der Tropenländer. Tübingen: F.G. Cotta; Paris: F. Schoell.

  • Wieser, G. 1997. Carbon dioxide gas exchange of cembran pine (Pinus cembra) at the alpine timberline during winter. Tree Physiology 17: 473–477.

    Article  Google Scholar 

  • Wieser, G., and M. Bahn. 2004. Seasonal and spatial variation of woody tissue respiration in a Pinus cembra tree at the alpine timberline in the central Austrian Alps. Trees - Structure and Function 18: 576–580.

    Google Scholar 

  • Wieser, G., and M. Tausz. 2007. Trees at their upper limit—Treelife limitation at the Alpine Timberline. Dordrecht: Springer.

    Book  Google Scholar 

  • Würth, M.K.R., S. Pelaez-Riedl, S.J. Wright, and C. Körner. 2005. Non-structural carbohydrate pools in a tropical forest. Oecologia 143: 11–24.

    Article  Google Scholar 

  • Zhu, Y., R.T.W. Siegwolf, W. Durka, and C. Körner. 2010. Phylogenetically balanced evidence for structural and carbon isotope responses in plants along elevational gradients. Oecologia 162: 853–863.

    Article  Google Scholar 

Download references

Acknowledgments

With great pleasure I dedicate this article to Professor Terry Callaghan as part of the festschrift at the occasion of his retirement from directorship at the Abisko Research Station. Much of the treeline theory presented here developed during my sabbatical stays at the station. I thank Jens Paulsen for providing his unpublished statistics on global treeline climatology and Susanna Riedl for the artwork. This paper developed while funded by the European Research Council, advanced Grant 233399, TREELIM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Körner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Körner, C. Treelines Will be Understood Once the Functional Difference Between a Tree and a Shrub Is. AMBIO 41 (Suppl 3), 197–206 (2012). https://doi.org/10.1007/s13280-012-0313-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13280-012-0313-2

Keywords

Navigation