Skip to main content

Advertisement

Log in

PEGylated lipid microspheres loaded with cabazitaxel for intravenous administration: stability, bioavailability, antitumor efficacy, and toxicity

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

This paper aimed to develop a novel lipid microsphere delivering cabazitaxel (CTX) using phosphatidylcholine combined with DSPE-PEG2000 as emulsifier, and evaluate its stability, pharmacokinetics, antitumor efficacy, and toxicity. The pegylated cabazitaxel-loaded lipid microspheres (CTX-PLMs) were prepared by high-pressure homogenization methods; the biological samples were analyzed by the UPLC-MS/MS method. CTX-PLMs had a drug concentration of 1.2 mg/ml and a mean particle size of 180.0 ± 51.119 nm. CTX-PLMs showed a superior physical stability as it could remain nearly intact after 1-year storage. The AUC0-t of the CTX-PLMs was 1562.6 ± 520.1 μg h L−1 compared with the CTX-solution of 860.734 ± 312.4 μg h L−1. CTX-PLMs exhibited a strong antitumor efficacy against NCI-N87 and DU145 tumor models with tumor growth inhibition rates of 93.5 and 88.5%, respectively. The LD50 of CTX-PLMs in rats was 20.89 mg/kg. As for the long-term toxicity, the thymus, mesenteric lymph nodes, and bone marrow were the main toxic target organs and systemic toxicity induced by CTX-PLMs was alleviated relative to that of the CTX-solution. Safety assessment studies including hemolysis test, dermal sensitization test, systemic anaphylaxis, and vascular stimulation test indicated that CTX-PLMs is safe enough for intravenous administration. In a word, CTX-PLMs are a promising carrier for intravenous administration with satisfactory stability, stronger tumor inhibition, and superior safety profile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Reddy LH, Bazile D. Drug delivery design for intravenous route with integrated physicochemistry, pharmacokinetics and pharmacodynamics: illustration with the case of taxane therapeutics. Adv Drug Deliv Rev. 2014;71:34–57.

    Article  PubMed  CAS  Google Scholar 

  2. Hoang B, Ernsting MJ, Tang WHS, Bteich J, Undzys E, Kiyota T, et al. Cabazitaxel-conjugated nanoparticles for docetaxel-resistant and bone metastatic prostate cancer. Cancer Lett. 2017;410:169–79.

    Article  PubMed  CAS  Google Scholar 

  3. Froehner M, Wirth MP. Cabazitaxel for castration-resistant prostate cancer. Lancet. 2011;377(9760):122–3.

    Article  Google Scholar 

  4. Shao Y, Zhang C, Yao Q, Wang Y, Tian B, Tang X, et al. Improving cabazitaxel chemical stability in parenteral lipid emulsions using cholesterol. European Journal of Pharmaceutical Sciences Official Journal of the European Federation for Pharmaceutical Sciences. 2014;52(1):1–11.

    Article  PubMed  CAS  Google Scholar 

  5. Oudard S. TROPIC: phase III trial of cabazitaxel for the treatment of metastatic castration-resistant prostate cancer. Future Oncol. 2011;7(4):497–506.

    Article  PubMed  CAS  Google Scholar 

  6. Shariffa YN, Tan TB, Abas F, Mirhosseini H, Nehdi IA, Tan CP. Producing a lycopene nanodispersion: the effects of emulsifiers. Food & Bioproducts Processing. 2016;98:210–6.

    Article  CAS  Google Scholar 

  7. Lorenz W, Reimann HJ, Schmal A, Dormann P, Schwarz B, Neugebauer E, et al. Histamine release in dogs by Cremophor El ® and its derivatives: oxethylated oleic acid is the most effective constituent. Agents Actions. 1977;7(1):63–7.

    Article  PubMed  CAS  Google Scholar 

  8. Boer HH, Moorer-van Delft CM, Müller LJ, Kiburg B, Vermorken JB, Heimans JJ. Ultrastructural neuropathologic effects of Taxol on neurons of the freshwater snail Lymnaea stagnalis. J Neuro-Oncol. 1995;25(1):49–57.

    Article  CAS  Google Scholar 

  9. Hilkens PHE, Verweij J, Stoter G, Vecht CJ, Putten WLJV, Bent MJVD. Peripheral neurotoxicity induced by docetaxel. Neurology. 1996;46(1):104–8.

    Article  PubMed  CAS  Google Scholar 

  10. Chan S, Romieu G, Huober J, Delozier T, Tubiana-Hulin M, Schneeweiss A, et al. Phase III study of gemcitabine plus docetaxel compared with capecitabine plus docetaxel for anthracycline-pretreated patients with metastatic breast cancer. Journal of Clinical Oncology Official Journal of the American Society of Clinical Oncology. 2009;27(11):1753–60.

    Article  PubMed  CAS  Google Scholar 

  11. Han X, Chen D, Sun J, Zhou J, Li D, Gong F, et al. A novel cabazitaxel-loaded polymeric micelle system with superior in vitro stability and long blood circulation time. Journal of Biomaterials Science Polymer Edition. 2016;27(7):626–42.

    Article  PubMed  CAS  Google Scholar 

  12. Satyavathi K, Bhojaraju P, Srikanthi M, Sudhakar P. Formulation and in-vitro evaluation of liposomal drug delivery system of cabazitaxel. Journal of Pharmaceutics & Drug Delivery Research 2016.

  13. Qu N, Sun Y, Xie J, Teng L. Preparation and evaluation of in vitro self-assembling HSA nanoparticles for cabazitaxel. Anti Cancer Agents Med Chem (Formerly Current Medicinal Chemistry - Anti-Cancer Agents). 2016;17(2):-.

  14. Venkateswarlu V. Lipid microspheres as drug delivery systems. Indian J Pharm Sci. 2001;63(6):450–8.

    Google Scholar 

  15. Liu K. Preparation and characterization of a submicron lipid emulsion of docetaxel: submicron lipid emulsion of docetaxel. Drug Development & Industrial Pharmacy. 2008;34(11):1227.

    Article  CAS  Google Scholar 

  16. Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov. 2005;4(2):145–60.

    Article  PubMed  CAS  Google Scholar 

  17. Knudsen NØ, Rønholt S, Salte RD, Jorgensen L, Thormann T, Basse LH, et al. Calcipotriol delivery into the skin with PEGylated liposomes. European Journal of Pharmaceutics & Biopharmaceutics Official Journal of Arbeitsgemeinschaft Für Pharmazeutische Verfahrenstechnik E V. 2012;81(3):532–9.

    CAS  Google Scholar 

  18. Che J, Okeke CI, Hu ZB, Xu J. DSPE-PEG: a distinctive component in drug delivery system. Curr Pharm Des. 2015;21(12):1598–605.

    Article  PubMed  CAS  Google Scholar 

  19. Zurowskapryczkowska K, Sznitowska M, Janicki S. Studies on the effect of pilocarpine incorporation into a submicron emulsion on the stability of the drug and the vehicle. European Journal of Pharmaceutics & Biopharmaceutics Official Journal of Arbeitsgemeinschaft Für Pharmazeutische Verfahrenstechnik E V. 1999;47(3):255.

    CAS  Google Scholar 

  20. Liu F, Wang D, Sun C, Mcclements DJ, Gao Y. Utilization of interfacial engineering to improve physicochemical stability of β-carotene emulsions: multilayer coatings formed using protein and protein-polyphenol conjugates. Food Chem. 2016;205:129–39.

    Article  PubMed  CAS  Google Scholar 

  21. Luo L, Wang X, Chen Q, Miao L, Zhuo X, Liu L, et al. A parenteral docetaxel-loaded lipid microsphere with decreased 7-epidocetaxel conversion in vitro and in vivo. Eur J Pharm Sci. 2017;109:638–49.

    Article  PubMed  CAS  Google Scholar 

  22. Gong H, Geng S, Zheng Q, Wang P, Luo L, Wang X, et al. An intravenous clarithromycin lipid emulsion with a high drug loading, H-bonding and a hydrogen-bonded ion pair complex exhibiting excellent antibacterial activity. Asian Journal of Pharmaceutical Sciences. 2016;11(5):618–30.

    Article  Google Scholar 

  23. Heyes J, Hall K, Tailor V, Lenz R, Maclachlan I. Synthesis and characterization of novel poly(ethylene glycol)-lipid conjugates suitable for use in drug delivery. J Control Release. 2006;112(2):280–90.

    Article  PubMed  CAS  Google Scholar 

  24. Rydberg HA, Arteta MY, Berg S, Lindfors L, Sigfridsson K. Probing adsorption of DSPE-PEG2000 and DSPE-PEG5000 to the surface of felodipine and griseofulvin nanocrystals. Int J Pharm. 2016;510(1):232–9.

    Article  PubMed  CAS  Google Scholar 

  25. Lorenz W, Reimann HJ, Schmal A, Dormann P, Schwarz B, Neugebauer E, et al. Histamine release in dogs by Cremophor E1 and its derivatives: oxethylated oleic acid is the most effective constituent. Agents Actions. 1977;7(1):63–7.

    Article  PubMed  CAS  Google Scholar 

  26. Shao Y, Li S, Tian B, Su L, Zhang C, Wang Y, et al. Evaluation of the stability and pharmacokinetics of cabazitaxel-loaded intravenous lipid microspheres: beneficial effect of cholesterol. European Journal of Lipid Science & Technology. 2015;117(4):460–70.

    Article  CAS  Google Scholar 

  27. Gou J, Feng S, Xu H, Fang G, Chao Y, Zhang Y, et al. Decreased core crystallinity facilitated drug loading in polymeric micelles without affecting their biological performances. Biomacromolecules. 2015;16(9):2920–9.

    Article  PubMed  CAS  Google Scholar 

  28. Dong W, Zhang L, Niu Y, Fan D, Wu X, Tang X, et al. A stable and practical etoposide-containing intravenous long−/medium-chain triglycerides-based lipid emulsion formulation: pharmacokinetics, biodistribution, toxicity, and antitumor efficacy. Expert Opinion on Drug Delivery. 2013;10(5):559–71.

    Article  PubMed  CAS  Google Scholar 

  29. Xu H, Ye F, Hu M, Yin P, Zhang W, Li Y, et al. Influence of phospholipid types and animal models on the accelerated blood clearance phenomenon of PEGylated liposomes upon repeated injection. Drug Delivery. 2015;22(5):598–607.

    Article  PubMed  CAS  Google Scholar 

  30. Geng S, Yang B, Wang G, Qin G, Wada S, Wang JY. Two cholesterol derivative-based PEGylated liposomes as drug delivery system, study on pharmacokinetics and drug delivery to retina. Nanotechnology. 2014;25(27):275103.

    Article  PubMed  CAS  Google Scholar 

  31. Zhao M, Su MX, Luo Y, He H, Cai C, Tang X. Evaluation of docetaxel-loaded intravenous lipid emulsion: pharmacokinetics, tissue distribution, antitumor activity, safety and toxicity. Pharm Res. 2010;27(8):1687–702.

    Article  PubMed  CAS  Google Scholar 

  32. Zhu X, Tsendayush A, Yuan Z, Wen J, Cai J, Luo S, et al. Glycyrrhetinic acid-modified TPGS polymeric micelles for hepatocellular carcinoma-targeted therapy. Int J Pharm. 2017;529(1):451–64.

    Article  PubMed  CAS  Google Scholar 

  33. Duran GE, Wang YC, Francisco EB, Rose JC, Martinez FJ, Coller J, et al. Mechanisms of resistance to cabazitaxel. Mol Cancer Ther. 2015;14(1):193–201.

    Article  PubMed  CAS  Google Scholar 

  34. Lin X, Zhang B, Zhang K, Zhang Y, Wang J, Qi N, et al. Preclinical evaluations of norcantharidin-loaded intravenous lipid microspheres with low toxicity. Expert Opinion on Drug Delivery. 2012;9(12):1449–62.

    Article  PubMed  CAS  Google Scholar 

  35. Drayer DE. Problems in therapeutic drug monitoring: the dilemma of enantiomeric drugs in man. Ther Drug Monit. 1988;10(1):1–7.

    Article  PubMed  CAS  Google Scholar 

  36. Tamilvanan S. Oil-in-water lipid emulsions: implications for parenteral and ocular delivering systems. Prog Lipid Res. 2004;43(6):489–533.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Suzhou Xishan Zhongke Drugs Research and Development Co., Ltd. for the assistance in the antitumor activity and safety test, which includes providing instruments, equipment, or related experimental materials and animals. All the experiments reported comply with Institutional Animal Care and Use Committee.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingxin Gou.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Xie, B., Li, L. et al. PEGylated lipid microspheres loaded with cabazitaxel for intravenous administration: stability, bioavailability, antitumor efficacy, and toxicity. Drug Deliv. and Transl. Res. 8, 1365–1379 (2018). https://doi.org/10.1007/s13346-018-0562-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-018-0562-0

Keywords

Navigation