Skip to main content

Advertisement

Log in

Raloxifene-loaded SLNs with enhanced biopharmaceutical potential: QbD-steered development, in vitro evaluation, in vivo pharmacokinetics, and IVIVC

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Raloxifene hydrochloride, a second-generation selective estrogen receptor modulator, has been approved for the management of breast cancer. However, it is known to exhibit poor (~ 2%) and inconsistent oral bioavailability in humans, primarily ascribable to its low aqueous solubility, extensive first-pass metabolism, P-gp efflux, and presystemic glucuronide conjugation. The present research work entails the systematic development and evaluation of SLNs of RLX for its enhanced biopharmaceutical performance against breast cancer. Factor screening studies were conducted using Taguchi design, followed by optimization studies employing Box-Behnken design. Preparation of SLNs was carried out using glyceryl monostearate and Compritol® 888 ATO (i.e., lipid), Phospholipid S-100 (i.e., co-surfactant), and TPGS-1000 (i.e., surfactant) employing solvent diffusion method. The optimized formulation was evaluated for zeta potential, average particle size, field emission scanning electron microscope, transmission electron microscopy, and in vitro release study. Further, MCF-7 cells (cell cytotoxicity assay, apoptosis assay, and reactive oxygen species assay) and Caco-2 cells (cell uptake studies and P-gp efflux assay) were employed to evaluate the in vitro anticancer potential of the developed optimized formulation. In vivo pharmacokinetic studies were conducted in Sprague–Dawley rats to evaluate the therapeutic profile of the developed formulation. The optimized SLN formulations exhibited a mean particle size of 109.7 nm, PDI 0.289 with a zeta potential of − 13.7 mV. In vitro drug dissolution studies showed Fickian release, with release exponent of 0.137. Cell cytotoxicity assay, apoptosis assay, and cellular uptake indicated 6.40-, 5.40-, and 3.18-fold improvement in the efficacy of RLX-SLNs vis-à-vis pure RLX. Besides, the pharmacokinetic studies indicated quite significantly improved biopharmaceutical performance of RLX-SLNs vis-à-vis pure drug, with 4.06-fold improvement in Cmax, 4.40-fold in AUC(0-72 h), 4.56-fold in AUC(0-∞), 1.53-fold in Ka, 2.12-fold in t1/2, and 1.22-fold in Tmax. Further, for RLX-SLNs and pure drug, high degree of level A linear correlation was established between fractions of drug dissolved (in vitro) and of drug absorbed (in vivo) at the corresponding time-points. Stability studies indicated the robustness of RLX-SLNs when stored at for 3 months. Results obtained from the different studies construe promising the anticancer potential of the developed RLX-SLNs, thereby ratifying the lipidic nanocarriers as an efficient drug delivery strategy for improving the biopharmaceutical attributes of RLX.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Availability of data and materials

All data generated or analyzed during this study are included in this article (and its supplementary information files).

References

  1. WHO. Latest global cancer data: Cancer burden rises to 18.1 million new cases and 9.6 million cancer deaths in 2018. 2018.

  2. Bryant HU. Mechanism of action and preclinical profile of raloxifene, a selective estrogen receptor modulator. Rev Endocr Metab Disord. 2001;2:129–38.

    Article  CAS  PubMed  Google Scholar 

  3. Wempe MF, Wacher VJ, Ruble KM, Ramsey MG, Edgar KJ, Buchanan NL, et al. Pharmacokinetics of raloxifene in male Wistar-Hannover rats: influence of complexation with hydroxybutenyl-beta-cyclodextrin. Int J Pharm. 2008;346:25–37.

    Article  CAS  PubMed  Google Scholar 

  4. Ravi PR, Aditya N, Kathuria H, Malekar S, Vats R. Lipid nanoparticles for oral delivery of raloxifene: optimization, stability, In vivo evaluation and uptake mechanism. Eur J Pharm Biopharm. 2014;87:114–24.

    Article  CAS  PubMed  Google Scholar 

  5. Tran TH, Ramasamy T, Cho HJ, Kim Y, Poudel BK, Choi H-G, et al. Formulation and optimization of raloxifene-loaded solid lipid nanoparticles to enhance oral bioavailability. J Nanosci Nanotechnol. 2014;14:4820–31.

    Article  CAS  PubMed  Google Scholar 

  6. Oh MJ, Shim JB, Yoo H, Lee GY, Jo H, Jeong SM, et al. The dissolution property of raloxifene HCl solid dispersion using hydroxypropyl methylcellulose. Macromol Res. 2012;20:835–41.

    Article  CAS  Google Scholar 

  7. Jain A, Saini S, Kumar R, Sharma T, Swami. R., Katare OP, et al. Phospholipid-based complex of raloxifene with enhanced biopharmaceutical potential: synthesis, characterization and preclinical assessment. Int J Pharm. 2019:118698.

  8. Sameena Y, Sudha N, Chandrasekaran S, Enoch IVMV. The role of encapsulation by β-cyclodextrin in the interaction of raloxifene with macromolecular targets: a study by spectroscopy and molecular modeling. J Biol Phys. 2014;40:347–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jain A, Kaur R, Beg S, Kushwah V, Jain S, Singh B. Novel cationic supersaturable nanomicellar systems of raloxifene hydrochloride with enhanced biopharmaceutical attributes. Drug Deliv Transl Res. 2018;8:670–92.

    Article  CAS  PubMed  Google Scholar 

  10. Ağardan NBM, Değim Z, Yılmaz Ş, Altıntaş L, Topal T. The effectiveness of raloxifene-loaded liposomes and cochleates in breast cancer therapy. AAPS PharmSciTech. 2016;17:968–77.

    Article  PubMed  Google Scholar 

  11. Kushwaha AK, Vuddanda PR, Karunanidhi P, Singh SK, Singh S. Development and evaluation of solid lipid nanoparticles of raloxifene hydrochloride for enhanced bioavailability. Biomed Res Int. 2013;2013:1–9.

    Article  Google Scholar 

  12. Shah NV, Seth AK, Balaraman R, Aundhia CJ, Maheshwari RA, Parmar GR. Nanostructured lipid carriers for oral bioavailability enhancement of raloxifene: design and In vivo study. J Adv Res. 2016;7:423–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. O’Driscoll CM. Lipid-based formulations for intestinal lymphatic delivery. Eur J Pharm Sci. 2002;15:405–15.

    Article  PubMed  Google Scholar 

  14. Mehnert W, Mader K. Solid lipid nanoparticles production, characterization and applications. Adv Drug Deliv Rev. 2001;47:165–96.

    Article  CAS  PubMed  Google Scholar 

  15. Beg S, Jain S, Kushwah V, Bhatti GK, Sandhu PS, Katare OP, et al. Novel surface-engineered solid lipid nanoparticles of rosuvastatin calcium for low-density lipoprotein-receptor targeting: a quality by design-driven perspective. Nanomedicine (Lond). 2017;12:333–56.

    Article  CAS  Google Scholar 

  16. Feng B, Mills JB, Davidson RE, Mireles RJ, Janiszewski JS, Troutman MD, et al. In vitro P-glycoprotein assays to predict the in vivo interactions of P-glycoprotein with drugs in the central nervous system. Drug Metab Dispos. 2008;36:268–75.

    Article  CAS  PubMed  Google Scholar 

  17. Vieira ACC, Chaves LL, Pinheiro M, Lima SAC, Ferreira D, Sarmento B, et al. Mannosylated solid lipid nanoparticles for the selective delivery of rifampicin to macrophages. Artif Cells Nanomed Biotechnol. 2018;46:653–63.

    Article  CAS  PubMed  Google Scholar 

  18. Amasya G, Aksu B, Badilli U, Onay-Besikci A, Tarimci N. QbD guided early pharmaceutical development study: production of lipid nanoparticles by high pressure homogenization for skin cancer treatment. Int J Pharma. 2019;563:110–21.

    Article  CAS  Google Scholar 

  19. Nabi-Meibodi M, Vatanaraa A, Najafabadia RA, Rouinia RM, Ramezania V, Gilania K, et al. The effective encapsulation of a hydrophobic lipid-insoluble drug in solid lipid nanoparticles using a modified double emulsion solvent evaporation method. Colloids and Surfaces B: Biointerfaces 112 (2013) 408–414. 2013;112:408–14.

  20. Fan Z, Jiang B, Shi D, Yang L, Yin W, Zheng K, et al. Selective antitumor activity of drug-free TPGS nanomicelles with ROS-induced mitochondrial cell death Int J Pharm. 2021;594:120184.

    CAS  PubMed  Google Scholar 

  21. Collnot E, Baldes C, Schaefer UF, Edgar KJ, Wempe MF, Lehr CM. Vitamin E TPGS P-glycoprotein inhibition mechanism: Influence on conformational flexibility, intracellular ATP levels, and role of time and site of access. Mol Pharmaceutics. 2010;7:642–51.

    Article  CAS  Google Scholar 

  22. Kelidari HR, Saeedi M, Akbari J, Morteza-Semnani K, Valizadeh H, Maniruzzaman M, et al. Development and optimisation of spironolactone nanoparticles for enhanced dissolution rates and stability. AAPS PharmSciTech. 2017;18:1469–74.

    Article  CAS  PubMed  Google Scholar 

  23. Jain A, Agarwal A, Majumder S, Lariya N, Khaya A, Agrawal H, et al. Mannosylated solid lipid nanoparticles as vectors for site-specific delivery of an anti-cancer drug. J Control Release. 2010;148:359–67.

    Article  CAS  PubMed  Google Scholar 

  24. Jain A, Sharma G, Kushwah V, Ghoshal G, Jain A, Singh B, et al. Beta carotene-loaded zein nanoparticles to improve the biopharmaceutical attributes and to abolish the toxicity of methotrexate: A preclinical study for breast cancer. Artificial cells, nanomedicine, and biotechnology. 2018;46:402–12.

    Article  CAS  PubMed  Google Scholar 

  25. Singh B, Kaisar R, Beg S. Developing, “optimized” drug products employing “designed” experiments. Chem Ind Digest India: Blockdale Media LLP; 2013. p. 70–6.

    Google Scholar 

  26. Singh B, Saini S, Lohan S, Beg S. Systematic development of nanocarriers employing quality by design paradigms. In: Mishra V, Kesharwani P, Amin KCM, Iyer A, editors. Nanotechnology-Based Approaches for Targeting and Delivery of Drugs and Genes: Academic Press; 2017. p. 110–48.

  27. Singh B, Kumar R, Ahuja N. Optimizing drug delivery systems using systematic “design of experiments.” Part I: fundamental aspects. Crit Rev Ther Drug. 2005;22.

  28. Singh B, Dahiya M, Saharan V, Ahuja N. Optimizing drug delivery systems using systematic “design of experiments.” Part II: Retrospect and prospects. Crit Rev Ther Drug Carrier Syst. 2005;22:215–94.

  29. Singh B, Kapil R, Nandi M, Ahuja N. Developing oral drug delivery systems using formulation by design: vital precepts, retrospect and prospects. Expert Opin Drug Deliv. 2011;8:1341–60.

    Article  CAS  PubMed  Google Scholar 

  30. Dhawan S, Kapil R, Singh B. Formulation development and systematic optimization of solid lipid nanoparticles of quercetin for improved brain delivery. J Pharm Pharmacol. 2011;63:342–51.

    Article  CAS  PubMed  Google Scholar 

  31. Ahad A, Shakeel F, Alfaifi OA, Raish M, Ahmad A, Al-Jenoobi FI, et al. Solubility determination of raloxifene hydrochloride in ten pure solvents at various temperatures: thermodynamics-based analysis and solute–solvent interactions. Int J Pharm. 2018;544:165–71.

    Article  CAS  PubMed  Google Scholar 

  32. Jain A, Jain A, Garg NK, Tyagi RK, Singh B, Katare OP, et al. Surface engineered polymeric nanocarriers mediate the delivery of transferrin–methotrexate conjugates for an improved understanding of brain cancer. Acta Biomater. 2015;24:140–51.

    Article  CAS  PubMed  Google Scholar 

  33. USFDA. Dissolution Methods. USFDA; 2004.

  34. Costa P, Lobo JMS. Modeling and comparison of dissolution profiles. Eur J Pharm Sci. 2001;13:123–33.

    Article  CAS  PubMed  Google Scholar 

  35. Mircioiu C, Voicu V, Anuta V, Tudose A, Celia C, Paolino D, et al. Mathematical modeling of release kinetics from supramolecular drug delivery systems. Pharmaceutics. 2019;11:1–45.

    Article  Google Scholar 

  36. Zambito Y, Pedreschi E, Di Colo DG. Is dialysis a reliable method for studying drug release from nanoparticulate systems?—A case study. Int J Pharm. 2012;434:28–34.

    Article  CAS  PubMed  Google Scholar 

  37. ATCC. Caco-2 (ATCC® HTB-37™). 2019.

  38. ATCC. MCF7 (ATCC® HTB-22™). 2019.

  39. Natoli M, Leoni BD, D’Agnano I, Zucco F, Felsani A. Good Caco-2 cell culture practices. Toxicol In Vitro. 2012;26:1243–6.

    Article  CAS  PubMed  Google Scholar 

  40. Lin R, Ng LS, Wang CH. In vitro study of anticancer drug doxorubicin in PLGA-based microparticles. Biomaterials. 2005;26:4476–85.

    Article  CAS  PubMed  Google Scholar 

  41. Jain A, Sharma T, Sharma G, Khurana RK, Katare OP, Singh B. QbD driven analytical method development and validation for raloxifene hydrochloride in pure drug and solid oral dosage form. Anal Chem Lett. 2019:1–16.

  42. Riccardi C, Nicoletti I. Analysis of apoptosis by propidium iodide staining and flow cytometry. Nat Protoc. 2006;1:1458–61.

    Article  CAS  PubMed  Google Scholar 

  43. Qiu Y, Rojas E, Murray RA, Irigoyen J, Gregurec D, Castro-hartmann P, et al. Cell uptake, intracellular distribution, fate and reactive oxygen species generation of polymer brush engineered CeO2−x NPs. Nanoscale. 2015;7:6588–98.

    Article  CAS  PubMed  Google Scholar 

  44. Chemicon. Multidrug resistance direct dye efflux assay. www.chemicon.com; 2019. p. 1–16.

  45. Jouan E, Le Vée M, Mayati A, Denizot C, Parmentier Y, Fardel O. Evaluation of P-glycoprotein inhibitory potential using a rhodamine 123 accumulation assay. Pharmaceutics. 2016;8:E12.

    Article  PubMed  Google Scholar 

  46. Zhang Y, Huo M, Zhou J, Xie S. PKSolver: an add-in program for pharmacokinetic and pharmacodynamic data analysis in Microsoft Excel. Comput Meth Prog Bio. 2010;99:306–14.

    Article  PubMed  Google Scholar 

  47. Hanif M, Shoaib MH, Yousuf RI, Zafar F. Development of in vitro-In vivo correlations for newly optimized nimesulide formulations. PLoS One. 2018;13:e0203123.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Bandyopadhyay S, Beg S, Katare OP, Sharma G, Singh B. QbD-oriented development of self-nanoemulsifying drug delivery systems (SNEDDS) of valsartan with lmproved biopharmaceutical performance. Curr Drug Deliv. 2015;12:544–63.

    Article  CAS  PubMed  Google Scholar 

  49. Sharma T, Jain A, Kaur R, Saini S, Katare OP, Singh B. Supersaturated LFCS type III self-emulsifying delivery systems of sorafenib tosylate with improved biopharmaceutical performance: QbD-enabled development and evaluation. Drug Deliv Transl Res. 2020;10:839–61.

    Article  CAS  PubMed  Google Scholar 

  50. WHO. Stability testing of active pharmaceutical ingredients and finished pharmaceutical products. In: preparations Ecosfp, editor.2018.

  51. Makoni PA, Wa KK, Walker RB. Short term stability testing of efavirenz-loaded solid lipid nanoparticle (SLN) and nanostructured lipid carrier (NLC) dispersions. Pharmaceutics. 2019;11:397–417.

    Article  CAS  PubMed Central  Google Scholar 

  52. Gattefosse. Compritol® 888 ATO: A smart solution to sustain drug release. 2021.

  53. Gattefosse. Pharmaceutical Excipients. 2020.

  54. Khan AA, Mudassir J, Mohtar N, Darwis Y. Advanced drug delivery to the lymphatic system: lipid-based nanoformulations. Int J Nanomedicine. 2013;8:2733–44.

    PubMed Central  Google Scholar 

  55. Saraf S, Ghosh A, Kaur CD, Saraf S. Novel modified nanosystem based lymphatic targeting. Res J Nanosci Nanotechnol. 2011;1:60–74.

    Article  Google Scholar 

  56. Delmas T, Couffin A-C, Bayle PA, De Crecy F, Neumann E, Vinet F, et al. Preparation and characterization of highly stable lipid nanoparticles with amorphous core of tuneable viscosity. J Colloid Interface Sci. 2011;360:471–81.

    Article  CAS  PubMed  Google Scholar 

  57. Hao J, Wang F, Wang X, Zhang D, Bi Y, Gao Y, et al. Development and optimization of baicalin-loaded solid lipid nanoparticles prepared by coacervation method using central composite design. Eur J Pharm Sci. 2012;47:497–505.

    Article  CAS  PubMed  Google Scholar 

  58. Rehman M, Asadullah M, Ayesha Ihsan., Khan WS, Khan MI, Mahmood MA, et al. Solid and liquid lipid-based binary solid lipid nanoparticles of diacerein: in vitro evaluation of sustained release, simultaneous loading of gold nanoparticles, and potential thermoresponsive behavior. Int J Nanomedicine. 2015;10:2805.

  59. Yang C, Wu T, Qi Y, Zhang Z. Recent advances in the application of vitamin E TPGS for drug delivery. Theranostics. 2018;8:464–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Win YK, Feng SS. Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs. Biomaterials. 2005;26:2713–22.

    Article  CAS  PubMed  Google Scholar 

  61. Shi S, Han L, Deng L, Zhang Y, Shen H, Gong T, et al. Dual drugs (microRNA-34a and paclitaxel)-loaded functional solid lipid nanoparticles for synergistic cancer cell suppression. J Control Release. 2014;194:228–37.

    Article  CAS  PubMed  Google Scholar 

  62. Elliott NT, Yuan F. A microfluidic system for investigation of extravascular transport and cellular uptake of drugs in tumors. Biotechnol Bioeng. 2012;109:1326–35.

    Article  CAS  PubMed  Google Scholar 

  63. Kuche K, Bhargavi N, Dora CP, Jain S. Drug-phospholipid complex: A gothrough strategy for enhanced oral bioavailability. AAPS PharmSciTech. 2019;20:43.

    Article  CAS  PubMed  Google Scholar 

  64. Hung YC, Pan TL, Hu WL. Roles of reactive oxygen species in anticancer therapy with Salvia miltiorrhiza Bunge. Oxid Med Cell Longev. 2016;2016:1–10.

    Article  Google Scholar 

  65. Guo Y, Luo J, Tan S, Otieno BO, Zhang Z. The applications of vitamin E TPGS in drug delivery. Eur J Pharm Sci. 2013;49:175–86.

    Article  CAS  PubMed  Google Scholar 

  66. Collnot E-M, Baldes C, Wempe MF, Kappl R, Hüttermann J, Hyatt JA, et al. Mechanism of inhibition of P-glycoprotein mediated efflux by vitamin E TPGS: influence on ATPase activity and membrane fluidity. Mol Pharm. 2007;4:465–74.

    Article  CAS  PubMed  Google Scholar 

  67. Dai W-G, Dong LC, Li S, Deng Z. Combination of pluronic/vitamin-E TPGS as a potential inhibitor of drug precipitation. Int J Pharm. 2008;355:31–7.

    Article  CAS  PubMed  Google Scholar 

  68. Kollipara S, Gandhi RK. Pharmacokinetic aspects and in vitro–In vivo correlation potential for lipid-based formulations. Acta Pharm Sin B. 2014;4:333–49.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Singh D, Bedi N, Tiwary AK. Comparison of UV spectrophotometric and HPLC method for estimating canagliflozin in bulk and tablet dosage form. Ind J Pharm Sci. 2019;81:39–44.

    Article  CAS  Google Scholar 

  70. Goebel K, Rolim CMB. Validation of UV spectrophotometric and HPLC methods for quantitative determination of atenolol in pharmaceutical preparations. J Lat Am J Pharm. 2007;26:765–70.

    Google Scholar 

  71. Machado JC, Lange AD, Todeschini V, Volpato NM. Development and validation of a discriminative dissolution method for atorvastatin calcium tablets using In vivo data by LC and UV methods. AAPS PharmSciTech. 2014;15:189–97.

    Article  CAS  PubMed  Google Scholar 

  72. Kaur P, Jiang X, Duan J, Stier E. Applications of in vitro–In vivo correlations in generic drug development: case studies. AAPS J. 2015;17:1035–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Shah R, Eldridge D, Palombo E, Harding I. Optimisation and Stability Assessment of Solid Lipid Nanoparticles using Particle Size and Zeta Potential. J Physical Sci. 2014;25.

  74. Hou D, Xie C, Huang K, Zhu C. The production and characteristics of solid lipid nanoparticles (SLNs). Biomaterials. 2003;24:1781–5.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors appreciate the generosity of M/s Stat-Ease Inc., Minneapolis, USA, for providing Design Expert software 11.0 version to the corresponding author (B.S.) ex-gratis as a mark of recognition for his exemplary contribution in the QbD-oriented drug delivery research work.

Funding

National UGC Centre of Excellence in NanoBioMedical Applications, Panjab University, liberal grants and facilities for the present research work.

Author information

Authors and Affiliations

Authors

Contributions

Atul Jain: data curation; formal analysis; funding acquisition; investigation; methodology; validation; writing—original draft. Teenu Sharma: validation, methodology, editing. Rajnedra Kumar: cell lines studies. OP Katare: supervision. Bhupinder Singh: conceptualization; visualization; project administration; resources; software; supervision; writing—review and editing.

Corresponding author

Correspondence to Bhupinder Singh.

Ethics declarations

Ethics approval and consent to participate

The in vivo studies were carried out in female Sprague–Dawley rats (180–220 g), after obtaining the requisite permission from institutional animal ethics committee (IAEC) of the Panjab University, Chandigarh, India, vide their letter no PU/IAEC/S/15/31. All institutional and national guidelines for the care and use of laboratory animals were followed.

Consent for publication

Yes.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 171 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jain, A., Sharma, T., Kumar, R. et al. Raloxifene-loaded SLNs with enhanced biopharmaceutical potential: QbD-steered development, in vitro evaluation, in vivo pharmacokinetics, and IVIVC. Drug Deliv. and Transl. Res. 12, 1136–1160 (2022). https://doi.org/10.1007/s13346-021-00990-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-021-00990-x

Keywords

Navigation