Skip to main content
Log in

Hadamard gap series in growth spaces

  • Published:
Collectanea Mathematica Aims and scope Submit manuscript

Abstract

Let \({h^\infty_v}\) be the class of harmonic functions in the unit disk which admit a two-sided radial majorant v(r). We consider functions v that fulfill a doubling condition. We characterize functions in \({h^\infty_v}\) that are represented by Hadamard gap series in terms of their coefficients, and as a corollary we obtain a characterization of Hadamard gap series in Bloch-type spaces for weights with a doubling property. We show that if \({u\in h^\infty_v}\) is represented by a Hadamard gap series, then u will grow slower than v or oscillate along almost all radii. We use the law of the iterated logarithm for trigonometric series to find an upper bound on the growth of a weighted average of the function u, and we show that the estimate is sharp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abakumov E., Doubtsov E.: Reverse estimates in growth spaces. Math. Z. 271, 399–413 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bennett G., Stegenga D.A., Timoney R.M.: Coefficients of Bloch and Lipschitz functions. Ill. J. Math. 25, 520–531 (1981)

    MathSciNet  MATH  Google Scholar 

  3. Borichev A.: On the minimum of harmonic functions. J. Anal. Math. 89, 199–212 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Borichev A., Lyubarskii Yu., Malinnikova E., Thomas P.: Radial growth of functions in Korenblum space. Algebra i Analiz 21, 47–65 (2009)

    MathSciNet  Google Scholar 

  5. Cartwright M.L.: On analytic functions regular in the unit circle. Q. J. Math. Oxf. Ser. 4, 246–257 (1933)

    MATH  Google Scholar 

  6. Eikrem, K.S., Malinnikova, E.: Radial growth of harmonic functions in the unit ball. Math. Scand. (to appear)

  7. Kahane J.-P., Weiss M., Weiss G.: On lacunary power series. Ark. Mat. 5, 1–26 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  8. Korenblum B.: An extension of the Nevanlinna theory. Acta Math. 135, 187–219 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kwon E.G., Pavlović M.: Bibloch mappings and composition operators from Bloch type spaces to BMOA. J. Math. Anal. Appl. 382(1), 303–313 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Lyubarskii Yu., Malinnikova E.: Radial oscillation of harmonic functions in the Korenblum class. Bull. Lond. Math. Soc. 44(1), 68–84 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Nikolski, N.K.: Selected problems of weighted approximation and spectral analysis. American Mathematical Society, New York (1976)

  12. Pavlović M.: Lacunary series in weighted spaces of analytic functions. Arch. Math. 97(5), 467–473 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Rubel L.A., Shields A.L.: The second duals of certain spaces of analytic functions. J. Aust. Math. Soc. 11, 276–280 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  14. Salem R., Zygmund A.: La loi du logarithme iteré pour les séries trigonométriques lacunaires. Bull. Sci. Math. II Ser. 74, 209–224 (1950)

    MathSciNet  MATH  Google Scholar 

  15. Shields A.L, Williams D.L.: Bounded projections, duality, and multipliers in spaces of harmonic functions. J. Reine. Angew. Math. 299–300, 256–279 (1978)

    MathSciNet  Google Scholar 

  16. Stević S.: Bloch-type functions with Hadamard gaps. Appl. Math. Comput. 208(2), 416–422 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Stroock, D.W.: A concise introduction to the theory of integration, 3rd edn. Birkhäuser, Boston (1999)

  18. Weiss M.: The law of the iterated logarithm for lacunary trigonometric series. Trans. Am. Math. Soc. 91, 444–469 (1959)

    MATH  Google Scholar 

  19. Wulan H., Zhu K.: Lacunary series in Q K spaces. Stud. Math. 178(3), 217–230 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Yamashita S.: Gap series and alpha-Bloch functions. Yokohama Math. J. 28, 31–36 (1980)

    MathSciNet  MATH  Google Scholar 

  21. Yang C., Xu W.: Spaces with normal weights and Hadamard gap series. Arch. Math. 96(2), 151–160 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Zygmund A.: Trigonometric series. Cambridge University Press, Cambridge (1968)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kjersti Solberg Eikrem.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eikrem, K.S. Hadamard gap series in growth spaces. Collect. Math. 64, 1–15 (2013). https://doi.org/10.1007/s13348-012-0065-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13348-012-0065-0

Keywords

Mathematics Subject Classification

Navigation