Skip to main content
Log in

Drivers of the Severity of the Extreme Hot Summer of 2015 in Western China

  • Regular Article
  • Published:
Journal of Meteorological Research Aims and scope Submit manuscript

Abstract

Western China experienced an extreme hot summer in 2015, breaking a number of temperature records. The summer mean surface air temperature (SAT) anomaly was twice the interannual variability. The hottest daytime temperature (TXx) and warmest night-time temperature (TNx) were the highest in China since 1964. This extreme hot summer occurred in the context of steadily increasing temperatures in recent decades. We carried out a set of experiments to evaluate the extent to which the changes in sea surface temperature (SST)/sea ice extent (SIE) and anthropogenic forcing drove the severity of the extreme summer of 2015 in western China. Our results indicate that about 65%–72% of the observed changes in the seasonal mean SAT and the daily maximum (Tmax) and daily minimum (Tmin) temperatures over western China resulted from changes in boundary forcings, including the SST/SIE and anthropogenic forcing. For the relative role of individual forcing, the direct impact of changes in anthropogenic forcing explain about 42% of the SAT warming and 60% (40%) of the increase in TNx and Tmin (TXx and Tmax) in the model response. The changes in SST/SIE contributed to the remaining surface warming and the increase in hot extremes, which are mainly the result of changes in the SST over the Pacific Ocean, where a super El Niño event occurred. Our study indicates a prominent role for the direct impact of anthropogenic forcing in the severity of the extreme hot summer in western China in 2015, although the changes in SST/SIE, as well as the internal variability of the atmosphere, also made a contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bindoff, N. L., P. A. Stott, K. M. AchutaRao, et al., 2013: Detection and attribution of climate change: From global to regional. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Stocker, T. F., et al., Eds., Cambridge University Press, Cambridge, UK, 867–952.

    Google Scholar 

  • Cattiaux, J., H. Douville, R. Schoetter, et al., 2015: Projected increase in diurnal and interdiurnal variations of European summer temperatures. Geophys. Res. Lett., 42, 899–907, doi: 10.1002/2014GL062531.

    Article  Google Scholar 

  • Christidis, N., P. A. Stott, and S. J. Brown, 2011: The role of human activity in the recent warming of extremely warm daytime temperatures. J. Climate, 24, 1922–1930, doi: 10.1175/2011JCLI4150.1.

    Article  Google Scholar 

  • CMA, 2016: China Climate Bulletin 2015. China Meteorological Administration, Beijing, 50 pp. (in Chinese)

    Google Scholar 

  • Díaz, J., R. García, F. V. de Castro, et al., 2002: Effects of extremely hot days on people older than 65 years in Seville (Spain) from 1986 to 1997. Int. J. Biometeorol., 46, 145–149, doi: 10.1007/s00484-002-0129-z.

    Article  Google Scholar 

  • Dole, R., M. Hoerling, J. Perlwitz, et al., 2011: Was there a basis for anticipating the 2010 Russian heat wave? Geophys. Res. Lett., 38, L06702, doi: 10.1029/2010GL046582.

    Article  Google Scholar 

  • Dong, B. W., R. Sutton, L. Shaffrey, et al., 2016a: The 2015 European heat wave. Bull. Amer. Meteor. Soc., 97, S57–S62, doi: 10.1175/BAMS-D-16-0140.1.

    Article  Google Scholar 

  • Dong, B. W., R. T. Sutton, W. Chen, et al., 2016b: Abrupt summer warming and changes in temperature extremes over Northeast Asia since the mid-1990s: Drivers and physical processes. Adv. Atmos. Sci., 33, 1005–1023, doi: 10.1007/s00376-016-5247-3.

    Article  Google Scholar 

  • Hewitt, H. T., D. Copsey, I. D. Culverwell, et al., 2011: Design and implementation of the infrastructure of HadGEM3: The next-generation Met Office climate modelling system. Geoscientific Model Development, 4, 223–253, doi: 10.5194/gmd-4-223-2011.

    Article  Google Scholar 

  • Kilbourne, E. M., 1997: Heat waves and hot environments. The Public Health Consequences of Disasters, Noji, E. K., Ed., Oxford University Press, New York, 245–269.

    Google Scholar 

  • King, A. D., G. J. van Oldenborgh, D. J. Karoly, et al., 2015: Attribution of the record high Central England temperature of 2014 to anthropogenic influences. Environ. Res. Lett., 10, 054002, doi: 10.1088/1748-9326/10/5/054002.

    Article  Google Scholar 

  • King, A. D., M. T. Black, S. K. Min, et al., 2016: Emergence of heat extremes attributable to anthropogenic influences. Geophys. Res. Lett., 43, 3438–3443, doi: 10.1002/2015GL067448.

    Article  Google Scholar 

  • Kosaka, Y., H. Nakamura, M. Watanabe, et al., 2009: Analysis on the dynamics of a wave-like teleconnection pattern along the summertime Asian jet based on a reanalysis dataset and climate model simulations. J. Meteor. Soc. Japan, 87, 561–580, doi: 10.2151/jmsj.87.561.

    Article  Google Scholar 

  • Kyselý, J., and E. Plavcová, 2012: Biases in the diurnal temperature range in Central Europe in an ensemble of regional climate models and their possible causes. Climate Dyn., 39, 1275–1286, doi: 10.1007/s00382-011-1200-4.

    Article  Google Scholar 

  • Lamarque, J. F., T. C. Bond, V. Eyring, et al., 2010: Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: Methodology and application. Atmos. Chem. Phys., 10, 7017–7039, doi: 10.5194/acp-10-7017-2010.

    Article  Google Scholar 

  • Lamarque, J. F., G. P. Kyle, M. Meinshausen, et al., 2011: Global and regional evolution of short-lived radiatively-active gases and aerosols in the Representative Concentration Pathways. Climatic Change, 109, 191–212, doi: 10.1007/s10584-011-0155-0.

    Article  Google Scholar 

  • Ma, S. M., T. J. Zhou, D. A. Stone, et al., 2017: Attribution of the July–August 2013 heat event in central and eastern China to anthropogenic greenhouse gas emissions. Environ. Res. Lett., 12, 054020, doi: 10.1088/1748-9326/aa69d2.

    Article  Google Scholar 

  • Miao, C., Q. H. Sun, D. X. Kong, et al, 2016: Record-breaking heat in Northwest China in July 2015: Analysis of the severity and underlying causes. Bull. Amer. Meteor. Soc., 97, S97–S101, doi: 10.1175/BAMS-D-16-0142.1.

    Article  Google Scholar 

  • Otto, F. E. L., N. Massey, G. J. van Oldenborgh, et al., 2012: Reconciling two approaches to attribution of the 2010 Russian heat wave. Geophys. Res. Lett., 39, L04702, doi: 10.1029/2011 GL050422.

    Article  Google Scholar 

  • Rahmstorf, S., and D. Coumou, 2011: Increase of extreme events in a warming world. Proc. Natl. Acad. Sci. USA, 108, 17905–17909, doi: 10.1073/pnas.1101766108.

    Article  Google Scholar 

  • Rayner, N. A., D. E. Parker, E. B. Horton, et al., 2003: Global ana-lyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. Atmos., 108, 4407, doi: 10.1029/2002JD002670.

    Article  Google Scholar 

  • Sato, N., and M. Takahashi, 2003: Formation mechanism of vorticity anomalies on the subtropical jet in the midsummer Northern Hemisphere. Theoretical and Applied Mechanics Japan, 52, 109–115, doi: 10.11345/nctam.52.109.

    Google Scholar 

  • Sato, N., and M. Takahashi, 2006: Dynamical processes related to the appearance of quasi-stationary waves on the subtropical jet in the midsummer Northern Hemisphere. J. Climate, 19, 1531–1544, doi: 10.1175/JCLI3697.1.

    Article  Google Scholar 

  • Seneviratne, S. I., N. Nicholls, D. Easterling, et al., 2012: Changes in climate extremes and their impacts on the natural physical environment. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. A Special Report of Working Groups I and II of the IPCC, Field, C. B., et al., Eds., Cambridge University Press, Cambridge, UK, 109–230.

    Google Scholar 

  • Stott, P., 2016: How climate change affects extreme weather events. Science, 352, 1517–1518, doi: 10.1126/science.aaf7271.

    Article  Google Scholar 

  • Stott, P. A., M. Allen, N. Christidis, et al., 2013: Attribution of weather and climate-related events. Climate Science for Serving Society: Research, Modeling and Prediction Priorities, Asrar, G. R., and J. W. Hurrell, Eds., Springer, Dordrecht, doi: 10.1007/978-94-007-6692-1_12.

    Google Scholar 

  • Sun, Y., L. C. Song, H. Yin, et al., 2016: Human Influence on the 2015 extreme high temperature events in western China. Bull. Amer. Meteor. Soc., 97, S102–S106, doi: 10.1175/BAMS-D-16-0158.1.

    Article  Google Scholar 

  • WMO, 2015: The State of Greenhouse Gases in the Atmosphere Based on Global Observations through 2014. WMO Greenhouse Gas Bull., No. 11, 4 pp. [Available online at http://www. wmo.int/pages/prog/arep/gaw/ghg/GHGbulletin.html].

    Google Scholar 

  • WMO, 2015: WMO-Press Conference: Status of the Global Climate in 2015. Geneva, 25 November 2015. [Available online at http://webtv.un.org/meetings-events/watch/wmo-press-conference-status-of-the-global-climate-in-2015-geneva-25-november-2015/4631098881001#full-text].

    Google Scholar 

  • Zhou, B. T., Y. Xu, J. Wu, et al., 2016: Changes in temperature and precipitation extreme indices over China: Analysis of a high-resolution grid dataset. Int. J. Climatol., 36, 1051–1066, doi: 10.1002/joc.4400.

    Article  Google Scholar 

  • Zwiers, F. W., X. B. Zhang, and Y. Feng, 2011: Anthropogenic influence on long return period daily temperature extremes at regional scales. J. Climate, 24, 881–892, doi: 10.1175/2010JCLI 3908.1.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Chen.

Additional information

Supported by the National Natural Science Foundation of China (416750788, U1502233, and 41320104007), Youth Innovation Promotion Association of Chinese Academy of Sciences (2018102), and Natural Environment Research Council via National Centre for Atmospheric Science of UK.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, W., Dong, B. Drivers of the Severity of the Extreme Hot Summer of 2015 in Western China. J Meteorol Res 32, 1002–1010 (2018). https://doi.org/10.1007/s13351-018-8004-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13351-018-8004-y

Key words

Navigation