Skip to main content
Log in

Critical Evaluation of Kinetic Method Measurements: Possible Origins of Nonlinear Effects

  • Research Article
  • Published:
Journal of The American Society for Mass Spectrometry

Abstract

The kinetic method is a widely used approach for the determination of thermochemical data such as proton affinities (PA) and gas-phase acidities (ΔH° acid ). These data are easily obtained from decompositions of noncovalent heterodimers if care is taken in the choice of the method, references used, and experimental conditions. Previously, several papers have focused on theoretical considerations concerning the nature of the references. Few investigations have been devoted to conditions required to validate the quality of the experimental results. In the present work, we are interested in rationalizing the origin of nonlinear effects that can be obtained with the kinetic method. It is shown that such deviations result from intrinsic properties of the systems investigated but can also be enhanced by artifacts resulting from experimental issues. Overall, it is shown that orthogonal distance regression (ODR) analysis of kinetic method data provides the optimum way of acquiring accurate thermodynamic information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Cooks, R.G., Kruger, T.L.: Intrinsic basicity determination using metastable ions. J. Am. Chem. Soc. 99, 1279–1281 (1977)

    Article  CAS  Google Scholar 

  2. Cooks, R.G., Koskinen, J.T., Thomas, P.D.: The kinetic method of making thermochemical determinations. J. Mass Spectrom. 34, 85–92 (1999)

    Article  CAS  Google Scholar 

  3. McLuckey, S.A., Cameron, D., Cooks, R.G.: Proton affinities from dissociations of proton-bound dimers. J. Am. Chem. Soc. 103, 1313–1317 (1981)

    Article  CAS  Google Scholar 

  4. Majumdar, T.K., Clairet, F., Tabet, J.C., Cooks, R.G.: Epimer distinction and structural effects on gas-phase acidities of alcohols measured using the kinetic method. J. Am. Chem. Soc. 114, 2897–2903 (1992)

    Article  CAS  Google Scholar 

  5. Cheng, X., Wu, Z., Fenselau, C.: Collision energy dependence of proton-bound dimer dissociation: entropy effects, proton affinities, and intramolecular hydrogen-bonding in protonated peptides. J. Am. Chem. Soc. 115, 4844–4848 (1993)

    Article  CAS  Google Scholar 

  6. Drahos, L., Peltz, C., Vékey, K.: Accuracy of enthalpy and entropy determination using the kinetic method: are we approaching a consensus? J. Mass Spectrom. 39, 1016–1024 (2004)

    Article  CAS  Google Scholar 

  7. Ervin, K.M., Armentrout, P.B.: Systematic and random errors in ion affinities and activation entropies from the extended kinetic method. J. Mass Spectrom. 39, 1004–1015 (2004)

    Article  CAS  Google Scholar 

  8. Nold, M.J., Cerda, B.A., Wesdemiotis, C.: Proton affinities of the N- and C-terminal segments arising upon the dissociation of the amide bond in protonated peptides. J. Am. Soc. Mass Spectrom. 10, 1–8 (1999)

    Article  CAS  Google Scholar 

  9. Vekey, K.: Internal energy effects in mass spectrometry. J. Mass Spectrom. 31, 445–463 (1996)

    Article  CAS  Google Scholar 

  10. Drahos, L., Vekey, K.: How closely related are the effective and the real temperature. J. Mass Spectrom. 34, 79–84 (1999)

    Article  CAS  Google Scholar 

  11. Wenthold, P.G.: Determination of the proton affinities of bromo- and iodoacetonitrile using the kinetic method with full entropy analysis. J. Am. Soc. Mass Spectrom. 11, 601–605 (2000)

    Article  CAS  Google Scholar 

  12. Armentrout, P.B.: Entropy measurements and the kinetic method: a statistically meaningful approach. J. Am. Soc. Mass Spectrom. 11, 371–379 (2000)

    Article  CAS  Google Scholar 

  13. Bouchoux, G., Buisson, D.-A., Bourcier, S., Sablier, M.: Application of the kinetic method to bifunctional bases ESI tandem quadrupole experiments. Int. J. Mass Spectrom. 228, 1035–1054 (2003)

    Article  CAS  Google Scholar 

  14. Drahos, L., Vekey, K.: Entropy evaluation using the kinetic method: is it feasible? J. Mass Spectrom. 38, 1025–1042 (2003)

    Article  CAS  Google Scholar 

  15. Fournier, F., Afonso, C., Fagin, A.E., Gronert, S., Tabet, J.-C.: Can cluster structure affect kinetic method measurements? The curious case of glutamic acid's gas-phase acidity. J. Am. Soc. Mass Spectrom. 19, 1887–1896 (2008)

    Article  CAS  Google Scholar 

  16. Bouchoux, G., Defaye, D., McMahon, T., Likholyot, A., Mo, O., Yanez, M.: Structural and energetic aspects of the protonation of phenol, catechol, resorcinol, and hydroquinone. Chem.–Eur. J. 8, 2900–2909 (2002)

    Article  CAS  Google Scholar 

  17. Barbour, J.B., Karty, J.M.: Resonance and field/inductive substituent effects on the gas-phase acidities of para-substituted phenols: a direct approach employing density functional theory. J. Phys. Org. Chem. 18, 210–216 (2005)

    Article  CAS  Google Scholar 

  18. Fujio, M., McIver Jr., R.T., Taft, R.W.: Effects of the acidities of phenols from specific substituent-solvent interactions. Inherent substituent parameters from gas-phase acidities. J. Am. Chem. Soc. 103, 4017–4029 (1981)

    Article  CAS  Google Scholar 

  19. Boggs, P.T., Byrd, R.H., Rogers, J.E., Schnabel, R.B.: ODRPACK Version 2.01 Software for Weighted Orthogonal Distance Regression. National Institute of Standards and Technology, Gaithersburg (1992)

    Google Scholar 

  20. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Zakrzewski, V.G., Montgomery, J.A., Stratmann, R.E., Burant, J.C., Dapprich, S., Millam, J.M., Daniels, A.D., Kudin, K.N., Strain, M.C., Farkas, O., Tomasi, J., Barone, V., Cossi, M., Cammi, R., Mennucci, B., Pomelli, C., Adamo, C., Clifford, S., Ochterski, J., Petersson, G.A., Ayala, P.Y., Cui, Q., Morokuma, K., Rega, N., Salvador, P., Dannenberg, J.J., Malick, D.K., Rabuck, A.D., Raghava-chari, K., Foresman, J.B., Cioslowski, J., Ortiz, J.V., Baboul, A.G., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Gomperts, R., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Andres, J.L., Gonzalez, C., Head-Gordon, M., Replogle, E.S., Pople, J.A.: Gaussian 03. Gaussian, Inc, Pittsburgh (2002)

    Google Scholar 

  21. Nikolaev, E.N., Popov, I.A., Kharybin, O.N., Kononikhin, A.S., Nikolaeva, M.I., Borisov, Y.V.: In situ recognition of molecular chirality by mass spectrometry. Hydration effects on differential stability of homo- and heterochiral dimethyl tartrate clusters. Int. J. Mass Spectrom. 265, 347–358 (2007)

    Article  CAS  Google Scholar 

  22. Ma, S., Wang, F., Cooks, R.G.: Gas-phase acidity of urea. J. Mass Spectrom. 33, 943–949 (1998)

    Article  CAS  Google Scholar 

  23. Mezzache, S., Bruneleau, N., Vekey, K., Afonso, C., Karoyan, P., Fournier, F., Tabet, J.C.: Improved proton affinity measurements for proline and modified prolines using triple quadrupole and ion trap mass spectrometers. J. Mass Spectrom. 40, 1300–1308 (2005)

    Article  CAS  Google Scholar 

  24. Afonso, C., Modeste, F., Breton, P., Fournier, F., Tabet, J.C.: Proton affinities of the commonly occuring L-amino acids by using electrospray ionization-ion trap mass spectrometry. Eur. J. Mass Spectrom. 6, 443–449 (2000)

    Article  CAS  Google Scholar 

  25. Bourgoin-Voillard, S., Fournier, F., Afonso, C., Zins, E.L., Jacquot, Y., Pepe, C., Leclercq, G., Tabet, J.C.: Electronic effects of 11β substituted 17β-estradiol derivatives and instrumental effects on the relative gas phase acidity. J. Am. Soc. Mass Spectrom. 23, 2167–2177 (2012)

    Google Scholar 

  26. Chernushevich, I.V.: Duty cycle improvement for a quadrupole-time-of-flight mass spectrometer and its use for precursor ion scans. Eur. J. Mass Spectrom. 6, 471–479 (2000)

    Article  CAS  Google Scholar 

  27. McMahon, T.B., Kebarle, P.: Intrinsic acidities of substituted phenols and benzoic acids determined by gas-phase proton-transfer equilibriums. J. Am. Chem. Soc. 99, 2222–2230 (1977)

    Article  CAS  Google Scholar 

  28. Lorenz, U.J., Rizzo, T.R.: Multiple isomers and protonation sites of the phenylalanine/serine dimer. J. Am. Chem. Soc. 134, 11053–11055 (2012)

    Article  CAS  Google Scholar 

  29. Jia, B., Angel, L.A., Ervin, K.M.: Threshold collision-induced dissociation of hydrogen-bonded dimers of carboxylic acids. J. Phys. Chem. A 112, 1773–1782 (2008)

    Article  CAS  Google Scholar 

  30. Ervin, K.M.: Microcanonical analysis of the kinetic method. The meaning of the "effective temperature.". Int. J. Mass Spectrom. 195/196, 271–284 (2000)

    Article  CAS  Google Scholar 

  31. March, R.E.: An introduction to quadrupole ion trap mass spectrometry. J. Mass Spectrom. 32, 351–369 (1997)

    Article  CAS  Google Scholar 

  32. Shukla, A.K., Futrell, J.H.: Tandem mass spectrometry: dissociation of ions by collisional activation. J. Mass Spectrom. 35, 1069–1090 (2000)

    Article  CAS  Google Scholar 

  33. Rodgers, M.T., Armentrout, P.B.: Statistical modeling of competitive threshold collision-induced dissociation. J. Chem. Phys. 109, 1787–1800 (1998)

    Article  CAS  Google Scholar 

  34. DeTuri, V.F., Ervin, K.M.: Competitive threshold collision-induced dissociation: gas-phase acidities and bond dissociation energies for a series of alcohols. J. Phys. Chem. A 103, 6911–6920 (1999)

    Article  CAS  Google Scholar 

  35. Rodgers, M.T., Ervin, K.M., Armentrout, P.B.: Statistical modeling of collision-induced dissociation thresholds. J. Chem. Phys. 106, 4499–4508 (1997)

    Article  CAS  Google Scholar 

  36. Armentrout, P.B., Ervin, K.M., Rodgers, M.T.: Statistical rate theory and kinetic energy-resolved ion chemistry: theory and applications. J. Phys. Chem. A 112, 10071–10085 (2008)

    Article  CAS  Google Scholar 

  37. Holbrook, K.A., Pilling, M.J., Robertson, S.H.: Unimolecular Reactions, 2nd ed, Wiley: Chichester (1996)

  38. Gilbert, R.G., Smith, S.C.: Theory of Unimolecular and Recombination Reactions, Blackwell Scientific Publishing: Oxford (1990)

  39. Pak, A., Lesage, D., Gimbert, Y., Vekey, K., Tabet, J.-C.: Internal energy distribution of peptides in electrospray ionization: ESI and collision-induced dissociation spectra calculation. J. Mass Spectrom. 43, 447–455 (2008)

    Article  CAS  Google Scholar 

  40. Naban-Maillet, J., Lesage, D., Bossée, A., Gimbert, Y., Sztáray, J., Vékey, K., Tabet, J.-C.: Internal energy distribution in electrospray ionization. J. Mass Spectrom. 40, 1–8 (2005)

    Article  CAS  Google Scholar 

  41. Muntean, F., Armentrout, P.B.: Guided ion beam study of collision-induced dissociation dynamics: integral and differential cross sections. J. Chem. Phys. 115, 1213–1228 (2001)

    Article  CAS  Google Scholar 

  42. Angel, L.A., Ervin, K.M.: Gas-phase acidities and O–H bond dissociation enthalpies of phenol, 3-methylphenol, 2,4,6-trimethylphenol, and ethanoic acid. J. Phys. Chem. A 110, 10392–10403 (2006)

    Article  CAS  Google Scholar 

  43. Armentrout, P.B.: Mass spectrometry—not just a structural tool: the use of guided ion beam tandem mass spectrometry to determine thermochemistry. J. Am. Soc. Mass Spectrom. 13, 419–434 (2002)

    Article  CAS  Google Scholar 

  44. Cooks, R.G., Patrick, J.S., Kotiaho, T., McLuckey, S.A.: Thermochemical determinations by the kinetic method. Mass Spectrom. Rev. 13, 287–339 (1994)

    Article  CAS  Google Scholar 

  45. Linstrom, P.J., Mallard, W.G.: In: National Institute of Standards and Technology, Gaithersburg MD, 20899. Available at: http://webbook.nist.gov (2005)

  46. Bouchoux, G.: Evaluation of the protonation thermochemistry obtained by the extended kinetic method. J. Mass Spectrom. 41, 1006–1013 (2006)

    Article  CAS  Google Scholar 

  47. Remes, P.M., Glish, G.L.: On The time scale of internal energy relaxation of AP-MALDI and nano-ESI ions in a quadrupole ion trap. J. Am. Soc. Mass Spectrom. 20, 1801–1812 (2009)

    Article  CAS  Google Scholar 

  48. Afonso, C., Lesage, D., Fournier, F., Mancel, V., Tabet, J.-C.: Origin of enantioselective reduction of quaternary copper d, l amino acid complexes under vibrational activation conditions. Int. J. Mass Spectrom. 312, 185–194 (2012)

    Article  CAS  Google Scholar 

  49. Caldwell, G.W., Renneboog, R., Kebarle, P.: Gas-phase acidities of aliphatic carboxylic acids, based on measurements of proton-transfer equilibria. Can. J. Chem. 67, 611–618 (1989)

    Article  CAS  Google Scholar 

  50. Graul, S.T., Schnute, M.E., Squires, R.R.: Gas-phase acidities of carboxylic acids and alcohols from collision-induced dissociation of dimer cluster ions. Int. J. Mass Spectrom. Ion Process. 96, 181–198 (1990)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support from Research Minister, CNRS, and UPMC. C.A. acknowledges the Région Haute Normandie for financial support. P.B.A. thanks the National Science Foundation, CHE-1049580, for support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. B. Armentrout.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 881 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bourgoin-Voillard, S., Afonso, C., Lesage, D. et al. Critical Evaluation of Kinetic Method Measurements: Possible Origins of Nonlinear Effects. J. Am. Soc. Mass Spectrom. 24, 365–380 (2013). https://doi.org/10.1007/s13361-012-0554-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13361-012-0554-0

Key words

Navigation