Skip to main content
Log in

Lessons from the use of non-invasive genetic sampling as a way to estimate Eurasian otter population size and sex ratio

  • Original Paper
  • Published:
Acta Theriologica Aims and scope Submit manuscript

Abstract

Given the difficulties in establishing population parameters of elusive animals in the wild by traditional methods, such as trapping, much attention has been given in recent years to non-invasive genetic sampling. Our work compared estimates of population size and sex ratio derived from genetic sampling with the known number and sex of animals released during an otter reintroduction and reports on the pitfalls and opportunities that may be encountered in studies of this kind. This study makes use of 121 samples of otter spraints (faeces) collected over 7 months during a reintroduction in the Upper Thames (UK) where a total of 17 otters was released in two consecutive phases. Spraints were processed with a multiple tubes approach and seven microsatellites were used. Of all collected samples, 19 % were complete for at least five loci, the minimum required for discrimination between individuals. Six out of nine of the otters that were released in the first phase were detected, four males and two females, while none of the otters released in the second phase was detected probably due to a combination of sampling pitfalls and otter behaviour. In particular, the specific sex (mostly females) and dominance composition (lower) of the individuals in the second release group may explain our failure to detect individuals in this group. Taken together, our results add further evidence that genetic sampling approaches represent a potentially accurate and non-invasive route to census populations of otters but that the sampling design should take into account factors like the sex ratio and dominance composition of the population in order to maximise detection and minimise error.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Arrendal J, Walker CW, Sundqvist AK, Hellborg L, Vila C (2004) Genetic evaluation of an otter translocation program. Conserv Genet 5:79–88

    Article  CAS  Google Scholar 

  • Arrendal J, Vilà C, Björklund M (2007) Reliability of noninvasive genetic census of otters compared to field censuses. Conserv Genet 8:1097–1107

    Article  Google Scholar 

  • Bonesi L, Macdonald DW (2004) Impact of released Eurasian otters on a population of American mink: a test using an experimental approach. Oikos 106:9–18

    Article  Google Scholar 

  • Broquet T, Petit E (2004) Quantifying genotyping errors in noninvasive population genetics. Mol Ecol 13:3601–3608

    Article  PubMed  CAS  Google Scholar 

  • Broquet T, Menard N, Petit E (2007) Noninvasive population genetics: a review of sample source, diet, fragment length and microsatellite motif effects on amplification success and genotyping error rates. Conserv Genet 8:249–260

    Article  Google Scholar 

  • Buchan JC, Archie EA, van Horn RC, Moss CJ, Albert SC (2005) Locus effects and sources of error in noninvasive genotyping. Mol Ecol Notes 5:680–683

    Article  CAS  Google Scholar 

  • Coxon K E, Chanin P, Dallas J F, Sykes T (1999) The use of DNA fingerprinting to study the population dynamics of otters (Lutra lutra) in Southern Britain: a feasibility study. R&D Technical Report W202, Environment Agency, Bristol

  • Crawford A (2003) Fourth otter survey of England 2000–2002. Environment Agency, Bristol. p. 88

  • Creel S, Spong G, Sands JL, Rotella J, Zeigle J, Joe L, Murphy KM, Smith D (2003) Population size estimation in Yellowstone wolves with error-prone noninvasive microsatellite genotypes. Mol Ecol 12:2003–2009

    Article  PubMed  Google Scholar 

  • Dallas JF, Piertney SB (1998) Microsatellite primers for the Eurasian otter. Mol Ecol 7:1247–1263

    Article  Google Scholar 

  • Dallas JF, Bacon PJ, Carss DN, Conroy JWH, Green R, Jefferies DJ, Kruuk H, Marshall F, Piertney SB, Racey PA (1999) Genetic diversity in the Eurasian otter, Lutra lutra, in Scotland. Evidence from microsatellite polymorphism. Biol J Linn Soc 68:73–86

    Article  Google Scholar 

  • Dallas JF, Carss DN, Marshall F et al (2000) Sex identification of the Eurasian otter Lutra lutra by PCR typing of spraints. Conserv Genet 1:181–183

    Article  CAS  Google Scholar 

  • Dallas JF, Coxon KE, Sykes T, Chanin PRF, Marshall F, Carss DN, Bacon PJ, Piertney SB, Racey PA (2003) Similar estimates of population genetic composition and sex ratio derived from carcasses and faeces of Eurasian otter Lutra lutra. Mol Ecol 12:275–282

    Article  PubMed  CAS  Google Scholar 

  • Ferrando A, Lecis R, Domingo-Roura X, Ponsà M (2008) Genetic diversity and individual identification of reintroduced otters (Lutra lutra) in north-eastern Spain by DNA genotyping of spraints. Conserv Genet 9:129–139

    Article  CAS  Google Scholar 

  • Frantz AC, Pope LC, Carpenter PJ, Roper TJ, Wilson GJ, Delahay RJ, Burke T (2003) Reliable microsatellite genotyping of the Eurasian badger (Meles meles) using faecal DNA. Mol Ecol 12:1649–1661

    Article  PubMed  CAS  Google Scholar 

  • Georgiev D G (2008) Seasonality in marking activity of the Eurasian otter (Lutra lutra) in Southern Bulgaria. In: Proceedings of the Anniversary Scientific Conference of Ecology Plovdiv. pp 236–240. Available from http://web.uni-plovdiv.bg/ecology/files/ASCE2008/236-240_Georgiev_%282008%29_ASCE.pdf.

  • Gerloff U, Scholötterer C, Rassmann C, Tautz D (1995) Amplification of hypervariable simple sequence repeats (microsatellites) from excremental DNA of wild living bonobos (Pan paniscus). Mol Ecol 4:515–518

    Article  CAS  Google Scholar 

  • Hájková P, Zemanová B, Bryja J, Hájek B, Roche K, Tkadlec E, Zima J (2006) Factors affecting success of PCR amplification of microsatellite loci from otter faeces. Mol Ecol Notes 6:559–562

    Article  Google Scholar 

  • Hájková P, Pertoldi C, Zemanová B, Roche K, Hájek B, Bryja J, Zima J (2007) Genetic structure and evidence for recent population decline in Eurasian otter populations in the Czech and Slovak Republics: implications for conservation. J Zool (Lond) 272:1–9

    Article  Google Scholar 

  • Hájková P, Zemanová B, Roche K, Hájek B (2009) An evaluation of field and noninvasive genetic methods for estimating Eurasian otter population size. Conserv Genet 10:1667–1681

    Article  Google Scholar 

  • Hansen H, Ben-David M, McDonald DB (2008) Effects of genotyping protocols on success and errors in identifying individual river otters (Lontra canadensis) from their faeces. Mol Ecol Resour 8:282–289

    Article  PubMed  CAS  Google Scholar 

  • Huang CC, Hsu YC, Lee LL, Li SH (2005) Isolation and characterization of tetramicrosatellite DNA markers in the Eurasian otter (Lutra lutra). Mol Ecol Notes 5:314–316

    Article  CAS  Google Scholar 

  • Hung CM, Li SH, Lee LL (2004) Faecal DNA typing to determine the abundance and spatial organisation of otters (Lutra lutra) along two stream systems in Kinmen. Anim Conserv 7:301–311

    Article  Google Scholar 

  • Jansman HAH, Chanin PRF, Dallas JF (2001) Monitoring otter populations by DNA typing of spraints. IUCN Otter Specialist Group Bull 18:11–18

    Google Scholar 

  • Janssens X (2006) Monitoring and predicting elusive species colonisation. Application to the otter in the Cévennes National Park (France). Ph.D. thesis, Université Catholique de Louvain, Louvain-la-Neuve, Belgium.

  • Janssens X, Fontaine FM, Michaux RJ, Libois R, de Kerbanon J, Defourny P, Baret PB (2008) Genetic pattern of the recent recovery of European otters in southern France. Ecography 31:176–186

    Article  Google Scholar 

  • Jordan NR, Manser MB, Mwanguhya F, Kyabulima S, Rüedi P, Cant MA (2011) Scent marking in wild banded mongooses: 1. Sex-specific scents and overmarking. Anim Behav 81:31–42

    Article  Google Scholar 

  • Kalz B, Jewgenow K, Fickel J (2006) Structure of an otter (Lutra lutra) population in Germany—results of DNA and hormone analyses from faecal samples. Mamm Biol 71:321–335

    Google Scholar 

  • Koelewijn HP, Pérez-Haro M, Jansman HAH, Boerwinkel MC, Bovenschen J, Lammertsma DR, Niewold FJJ, Kuiters AT (2010) The reintroduction of the Eurasian otter (Lutra lutra) into the Netherlands: hidden life revealed by noninvasive genetic monitoring. Conserv Genet 11:601–614

    Google Scholar 

  • Kohn MH, York EC, Kamradt DA, Haugt G, Sauvajot RM, Wayne RK (1999) Estimating population size by genotyping faeces. Proc R Soc Lond Ser B-Biol Sci 266:657–663

    Article  CAS  Google Scholar 

  • Kranz A (2000) Otters (Lutra lutra) increasing in Central Europe: from the threat of extinction to locally perceived overpopulation? Mammalia 64:357–368

    Article  Google Scholar 

  • Kruuk H (1992) Scent marking by otters (Lutra lutra): signalling the use of resources. Behav Ecol 3:133–140

    Article  Google Scholar 

  • Kruuk H (2006) Otters: ecology, behaviour and conservation. Oxford University Press, Oxford

    Google Scholar 

  • Kruuk H, Conroy JWH, Glimmerveen U, Ouwerkrek EJ (1986) The use of spraints to survey populations of otters Lutra lutra. Biol Conserv 35:187–194

    Article  Google Scholar 

  • Kruuk H, Moorhouse A, Conroy JWH, Durbin L, Frears S (1989) An estimate of numbers and habitat preferences of otters Lutra lutra in Shetland, UK. Biol Conserv 49:241–245

    Google Scholar 

  • Kruuk H, Carss DN, Conroy JWH, Durbin L (1993) Otter (Lutra lutra) numbers and fish productivity in rivers in North-East Scotland. Symp Zool Soc Lond 65:171–191

    Google Scholar 

  • Lampa S, Gruber B, Henle K, Hoehn M (2008) An optimisation approach to increase DNA amplification success of otter faeces. Conserv Genet 9:201–210

    Article  CAS  Google Scholar 

  • Lanszki J, Hidas A, Szentes K, Révay T, Lehoczky I, Weiss S (2008) Relative spraint density and genetic structure of otter (Lutra lutra) along the Drava River in Hungary. Mamm Biol 73:40–47

    Google Scholar 

  • Lanszki J, Hidas A, Szentes K, Révay T, Lehoczky I, Jeney Z, Weiss S (2010) Genetic structure of otter (Lutra lutra) populations from two fishpond systems in Hungary. Mamm Biol 75:447–450

    Google Scholar 

  • Liu Q, Sommer SS (1998) Subcycling-PCR for multiplex long-distance amplification of regions with high and low GC content: application to the inversion hotspot in the factor VIII gene. BioTecniques 25:1022–1028

    CAS  Google Scholar 

  • Lucchini V, Fabbri E, Marucco F, Ricci S, Boitani L, Randi E (2002) Noninvasive molecular tracking of colonizing wolf (Canis lupus) packs in the western Italian Alps. Mol Ecol 11:857–868

    Article  PubMed  CAS  Google Scholar 

  • Luikart G, Ryman N, Tallmon DA, Schwartz MK, Allendorf FW (2010) Estimation of census and effective population sizes: the increasing usefulness of DNA-based approaches. Conserv Genet 11:355–373

    Article  CAS  Google Scholar 

  • Macdonald S, Mason C (1987) Seasonal marking in an otter population. Acta Theriologica 32:449–461

    Google Scholar 

  • Miller CR, Joyce P, Waits LP (2005) A new method for estimating the size of small populations from genetic mark-recapture data. Mol Ecol 14:1991–2005, Accessed 2 July 2010

    Article  PubMed  CAS  Google Scholar 

  • Mills LS, Citta JJ, Lair KP, Schwartz MK, Tallmon DA (2000) Estimating animal abundance using noninvasive DNA sampling: promise and pitfalls. Ecol Appl 10:283–294

    Article  Google Scholar 

  • Mucci N, Arrendal J, Ansorge H, Bailey M, Bodner M, Delibes M, Ferrando A, Fournier P, Fournier C, Godoy JA, Hájková P, Hauer S, Heggberget TM, Heidecke D, Kirjavainen H, Krueger H-H, Kvaloy K, Lafontaine L, Lanszki J, Lemarchand C, Liukko U-M, Loeschcke V, Ludwig G, Madsen AB, Mercier L, Ozolins J, Paunovic M, Pertoldi C, Piriz A, Prigioni C, Santos-Reis M, Luis TS, Stjernberg T, Schmid H, Suchentrunk F, Teubner J, Tornberg R, Zinke O, Randi E (2010) Genetic diversity and landscape genetic structure of otter (Lutra lutra) populations in Europe. Conserv Genet 11:583–599

    Google Scholar 

  • Parsons KM, Dallas JF, Claridge DE, Durban JW, Balcomb KC, Thompson PM (1999) Amplifying dolphin mitochondrial DNA from faecal plumes. Mol Ecol 8:1766–1768

    Article  PubMed  CAS  Google Scholar 

  • Peakall R, Smouse PE (2006) Genalex 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Pertoldi C, Hansen MM, Loeschcke V, Madsen AB, Jacobsen L, Baagoe H (2001) Genetic consequences of population decline in the European otter (Lutra lutra): an assessment of microsatellite DNA variation in Danish otters from 1883 to 1993. Proc R Soc Lond Ser B-Biol Sci 268:1775–1781

    Article  CAS  Google Scholar 

  • Philcox CK, Grogan AL, Macdonald DW (1999) Patterns of otter Lutra lutra road mortality in Britain. J Appl Ecol 36:748–762

    Article  Google Scholar 

  • Prigioni C, Remonti L, Balestrieri A (2006a) Otter Lutra lutra movements assessed by genotyped spraints in southern Italy. Hystrix 17:91–96

    Google Scholar 

  • Prigioni C, Remonti L, Balestrieri A, Sgrosso S, Priore G, Mucci N, Randi E (2006b) Estimation of European otter (Lutra lutra) population size by fecal DNA typing in southern Italy. J Mammal 87:855–858

    Article  Google Scholar 

  • Rostain RR, Ben-David M, Groves P, Randall JA (2004) Why do river otters scent-mark? An experimental test of several hypotheses. Anim Behav 68:703–711

    Article  Google Scholar 

  • Ruiz-Olmo J (1995) Visual Eurasian otter census in fresh-waters: a new method. Habitat 11:125–130

    Google Scholar 

  • Ruiz-Olmo J, Delibes M, Zapata SC (1998) External morphometry, demography and mortality of the otter Lutra lutra (Linneo, 1758) in the Iberian Peninsula. Galemys 10:239–251

    Google Scholar 

  • Ruiz-Olmo J, Loy A, Cianfrani C, Yoxon P, Yoxon G, de Silva P K, Roos A, Bisther M, Hájková P, Zermanova B ( 2008) Lutra lutra. IUCN red list of threatened species. Version 2012.1. Available from www.iucnlist.org.

  • Saavedra D (2002) Reintroduction of the Eurasian otter (Lutra lutra) in Muga and Fluvia’ Basins (North-Eastern Spain): viability, development, monitoring and trends of the new populations. Departament de Ciènces Ambientals, University of Girona, Girona, Spain.

  • Sjöåsen T (1997) Movements and establishment of reintroduced European otters Lutra lutra. J App Ecol 34:1070–1080

    Article  Google Scholar 

  • Strachan R, Jefferies D (1996) Otter survey of England 1991–1994. Vincent Wildlife Trust, London

    Google Scholar 

  • Taberlet P, Griffin S, Goossens B, Questiau S, Manceau V, Escaravage N, Waits LP, Bouvet J (1996) Reliable genotyping of samples with very low DNA quantities using PCR. Nucleic Acids Res 24:3189–3194

    Article  PubMed  CAS  Google Scholar 

  • Taberlet P, Camarra JJ, Griffin S, Uhres E, Hanotte O, Waits LP, Dubois-Paganon C, Burke T, Bouvet J (1997) Noninvasive genetic tracking of the endangered Pyrenean brown bear population. Mol Ecol 6:869–876

    Article  PubMed  CAS  Google Scholar 

  • Valière N (2002) GIMLET: a computer program for analysing genetic individual identification data. Mol Ecol Notes 2:377–379

    Google Scholar 

  • Van Oosterhout C, Hutchinson W, Wills D, Shipley P (2004) Micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  Google Scholar 

  • Waits JL, Leberg PL (2000) Biases associated with population estimation using molecular tagging. Anim Conserv 3:191–199

    Google Scholar 

  • Waits LP, Luikart G, Taberlet P (2001) Estimating the probability of identity among genotypes in natural populations: cautions and guidelines. Mol Ecol 10:249–256

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the Otter Trust for letting us study the released otters and the late Joe Chubb and Sarianne Drury for permission to work on their land. J. Dallas kindly provided the DNA profiles of 17 of the released otters and 11 DNA extracts from the blood samples to be re-typed. K. Wolff kindly made the laboratory at Newcastle University available. We would like to thank all the people that helped us with advice in the field, laboratory and on the manuscript and in particular M. Ben-David, P. Chanin, M. Charleston, A. Cooper, K. Coxon, J. Dallas, the late X. Domingo-Roura, R. Feber, P. Ganis, F. Mathews, N. Mucci, L. Richardson, R. Shooter, D. Stirling, T. Zerjal, and the anonymous reviewers. Special thanks to B. Harmsen for his assistance in the field. We would also like to thank A. Driver, G. Scholey, and T. Sykes for help and support. The work was sponsored by PTES (Mammals Trust UK), by the Environment Agency and by Hampshire Wildlife Trust. L.B. was supported by a Marie Curie Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Bonesi.

Additional information

Communicated by: Jan Wójcik

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonesi, L., Hale, M. & Macdonald, D.W. Lessons from the use of non-invasive genetic sampling as a way to estimate Eurasian otter population size and sex ratio. Acta Theriol 58, 157–168 (2013). https://doi.org/10.1007/s13364-012-0118-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13364-012-0118-5

Keywords

Navigation