Skip to main content

Advertisement

Log in

Terrestrial locomotor behaviors of the big brown bat (Vespertilionidae: Eptesicus fuscus)

  • SHORT COMMUNICATION
  • Published:
Mammal Research Aims and scope Submit manuscript

Abstract

Although living bats (Mammalia: Chiroptera) demonstrate a wide variety of terrestrial behaviors and abilities, most research on terrestrial locomotor behaviors of bats has focused on those species known to be very terrestrially adept. Previous researchers have hypothesized that the terrestrial ability of bats is constrained by pelvic and hindlimb morphology, with gracile (type 1), intermediate (type 2), and robust (type 3) morphotypes corresponding to increasing levels of terrestrial competency. Here we present the first detailed report of the terrestrial locomotion and track morphology of the widespread North American vespertilionid Eptesicus fuscus. Although E. fuscus represents the intermediate pelvic and hindlimb morphotype (type 2), it is capable of performing a lateral sequence walk, common to quadrupedal vertebrates. The terrestrial locomotion behaviors of E. fuscus are similar to those reported for species of European vespertilionids, but it shows greater terrestrial ability than non-vespertilionid type 2 bats. Results further support a wider range of terrestrial ability in type 2 bats than has previously been understood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data availability

All data are included herein. Trackway casts are accessioned into the vertebrate paleontology collection at the University of Kansas Natural History Museum and Biodiversity Institute (KUVP).

Code availability

Not applicable.

References

  • Abbassi N, Zanjani SLS (2022) Trace fossils of bats, Chiropterichnus ichnogen. nov., and felid footprints from the Katale Khor Cave, Zanjan Province, NW Iran. Fossil record 8. Bull N M Mus Nat Hist Sci 90:1–9

  • Adams RA, Carter RT (2017) Megachiropteran bats profoundly unique from microchiropterans in climbing and walking locomotion: evolutionary implications. PLoS One 12:e0185634

    Article  PubMed  PubMed Central  Google Scholar 

  • Agosta SJ (2002) Habitat use, diet and roost selection by the big brown bat (Eptesicus fuscus) in North America: a case for conserving an abundant species. Mamm Rev 32:179–198

  • Agosta SJ, Morton D, Kuhn KM (2003) Feeding ecology of the bat Eptesicus fuscus: ‘preferred’ prey abundance as one factor influencing prey selection and diet breadth. J Zool Soc London 260:169–177

  • Aliperti JR, Kelt DA, Heady PA III, Frick WF (2017) Using behavioral and stable isotope data to quantify rare dietary plasticity in a temperate bat. J Mamm 98:340–349

    Google Scholar 

  • Altenbach JS (1979) Locomotor morphology of the vampire bat, Desmodus rotundus. Am Soc Mamm, Spec Public 6:1–137

    Google Scholar 

  • Arlettaz R, Dändliker G, Kasybekov E, Pillet J-M, Rybin S, Zima J (1995) Feeding habits of the long-eared desert bat, Otonycteris hemprichi (Chiroptera: Vespertilionidae). J Mamm 76:873–876

  • Brigham RM (1990) Prey selection by big brown bats (Eptesicus fuscus) and common nighthawks (Chordeiles minor). Am Midl Nat 124:73–80

  • Brigham RM (1991) Flexibility in foraging and roosting behavior by the big brown bat (Eptesicus fuscus). Can J Zool 69:117–121

  • Brittingham MC, Williams LM (2000) Bat boxes as alternative roosts for displaced bat maternity colonies. Wildl Soc Bull 28:197–207

    Google Scholar 

  • Brown EE, Cashmore DD, Simmons NB, Butler RJ (2019) Quantifying the completeness of the bat fossil record. Palaeontology 62:757–776

    Article  Google Scholar 

  • Catto CMC, Hutson AM, Racey PA, Stephenson PJ (1996) Foraging behaviour and habitat use of the serotine bat (Eptesicus serotinus) in southern England. J Zool 238:623–633

  • Christian JJ (1956) The natural history of a summer aggregation of the big brown bat, Eptesicus fuscus fuscus. Am Midl Nat 55:66–95

  • Daniel MJ (1979) The New Zealand short-tailed bat, Mystacina tuberculata: a review of present knowledge. N Z J Zool 6:357–370

  • Davis WH, Barbour RW, Hassell MD (1968) Colonial behavior of Eptesicus fuscus. J Mamm 49:44–50

    Article  Google Scholar 

  • Dietz CL (1973) Bat Walking Behavior J Mamm 54:790–792

    CAS  Google Scholar 

  • Dwyer PD (1962) Studies on the two New Zealand bats. Zool Public Victoria Univ of Wellington 28:1–28

    Google Scholar 

  • Eiting TP, Gunnell GF (2009) Global completeness of the bat fossil record. J Mamm Evol 16:151–173

    Article  Google Scholar 

  • Emelianova OR, Panyutina AA, Sivitskaya NA, Kitaitsev AA, Tikhonova NA (2018) Spatiotemporal characteristics of quadrupedal locomotion in vespertilionid bats. Biol Bull 45:1015–1027

    Article  Google Scholar 

  • Hamilton IM, Barclay RMR (1998) Diets of juvenile, yearling, and adult big brown bats (Eptesicus fuscus) in southeastern Alberta. J Mamm 79:764–771

    Article  Google Scholar 

  • Hand SJ, Weisbecker V, Beck RMD, Archer M, Godthelp H, Tennyson AJD, Worth TH (2009) Bats that walk: a new evolutionary hypothesis for the terrestrial behavior of New Zealand’s endemic mystacinids. BMC Evol Biol 9:169

    Article  PubMed  PubMed Central  Google Scholar 

  • Hasiotis ST (2002) Continental trace fossils. SEPM Short Course Notes 51:1–132

    Google Scholar 

  • Hasiotis ST (2003) Complex ichnofossils of solitary to social soil organisms: understanding their evolution and roles in terrestrial paleoecosystems. Palaeogeogr Palaeocl Palaeoecol 192:259–320

    Article  Google Scholar 

  • Hildebrand M (1980) The adaptive significance of tetrapod gait selection. Am Zool 20:255–267

    Article  Google Scholar 

  • Hildebrand M (1985) Walking and running. In: Hildebrand M, Bramble DM, Liem KF, Wake DB (eds) Functional vertebrate morphology. Belknap Press of Harvard University, Cambridge, pp 38–57

    Chapter  Google Scholar 

  • Hildebrand M (1989) The quadrupedal gaits of vertebrates. Bioscience 39:766–775

    Article  Google Scholar 

  • Jones MF, Hasiotis ST (2018) Terrestrial behavior and trackway morphology of Neotropical bats. Acta Chiropt 20:229–250

    Article  Google Scholar 

  • Knecht RJ, Engel MS, Benner JS (2011) Late Carboniferous paleoichnology reveals the oldest full-body impression of a flying insect. Proc Nat Acad Sci USA 108:6515–6519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi M (2018) Anatomical attributes of the Musculus quadriceps femoris responsible for poor crawling ability in the greater horseshoe bat (Rhinolophus ferrumequinum). Int J Morphol 36:69–73

    Article  Google Scholar 

  • Kurta A, Baker RH (1990) Eptesicus fuscus Mamm Species 356:1–10

  • Lawrence MJ (1969) Some observations on non-volant locomotion in vespertilionid bats. J Zool 157:309–317

    Article  Google Scholar 

  • Lichtig AJ, Lucas SG, Klein H, Lovelace DM (2017) Triassic turtle tracks and the origin of turtles. Hist Biol 30:1112–1122

    Article  Google Scholar 

  • Lockley MG, Yang SY, Matsukawa M, Fleming F, Lim SK (1992) The track record of Mesozoic birds: evidence and implications. Philos Trans R Soc B 336:113–134

    Article  Google Scholar 

  • Lockley MG, Li R, Harris JD, Matsukawa M, Liu M (2007) Earliest zygodactyl bird feet: evidence from Early Cretaceous roadrunner-like tracks. Naturwissenschaften 94:657–665

    Article  CAS  PubMed  Google Scholar 

  • Lockley M, Harris JD, Mitchell L (2008) A global overview of pterosaur ichnology: tracksite distribution in space and time. Zitteliana 28:185–198

    Google Scholar 

  • López-Aguirre C, Hand SJ, Koyabu D, Tu VT, Wilson LAB (2021) Phylogeny and foraging behaviour shape modular morphological variation in bat humeri. J Anat 238:1312–1329

    Article  PubMed  Google Scholar 

  • Louzada NSV, Nogueira MR, Pessôa LM (2019) Comparative morphology and scaling of the femur in yangochiropteran bats. J Anat 235:124–150

    PubMed  PubMed Central  Google Scholar 

  • Mazin J-M, Pouech J (2020) The first non-pterodactyloid pterosaurian trackways and the terrestrial ability of non-pterodactyloid pterosaurs. Geobios 58:39–53

    Article  Google Scholar 

  • Otálora-Ardila A, Herrera MLG, Flores-Martínez JJ, Voigt CC (2013) Marine and terrestrial food sources in the diet of the fish-eating myotis (Myotis vivesi). J Mamm 94:1102–1110

  • Parsons S, Riskin DK, Hermanson JW (2010) Echolocation call production during aerial and terrestrial locomotion by New Zealand’s enigmatic lesser short-tailed bat, Mystacina tuberculata. J Exp Biol 213:551–557

  • Riskin DK, Hermanson JW (2005) Independent evolution of running in vampire bats. Nature 434:292

    Article  CAS  PubMed  Google Scholar 

  • Riskin DK, Bertram JEA, Hermanson JW (2005) Testing the hindlimb-strength hypothesis: non-aerial locomotion by Chiroptera is not constrained by the dimensions of the femur or tibia. J Exp Biol 208:1309–1319

    Article  PubMed  Google Scholar 

  • Riskin DK, Parsons S, Schutt WA Jr, Carter GG, Hermanson JW (2006) Terrestrial locomotion of the New Zealand short-tailed bat Mystacina tuberculata and the common vampire bat Desmodus rotundus. J Exp Biol 209:1725–1736

  • Sánchez MS, Carrizo LV (2021) Forelimb bone morphology and its association with foraging ecology in four families of Neotropical bats. J Mamm Evol 28:99–110

  • Schlosser-Sturm E, Schliemann H (1995) Morphology and function of the shoulder joint of bats (Mammalia: Chiroptera). J Zool Syst Evol Res 33:88–98

    Article  Google Scholar 

  • Schutt WA Jr, Simmons NB (2001) Morphological specializations of Cheiromeles (naked bulldog bats; Molossidae) and their possible role in quadrupedal locomotion. Acta Chiropt 3:225–235

  • Schutt WA Jr, Simmons NB (2006) Quadrupedal bats: form, function, and evolution. In: Zubaid A, McCracken GF, Kunz TH (eds) Functional and evolutionary ecology of bats. Oxford University Press, New York, pp 145–159

    Google Scholar 

  • Simmons JA (2005) Big brown bats and June beetles: multiple pursuit strategies in a seasonal acoustic predator-prey system. Acous Res Letters Online 6:238–242

  • Simmons JA, Eastman KM, Horowitz SS, O’Farrell MJ, Lee DN (2001) Versatility of biosonar in the big brown bat, Eptesicus fuscus. Acous Res Letters Online 2:43–48

  • Simmons NB, Cirranello AL (2022) Bat species of the world: a taxonomic and geographic database. https://batnames.org/. Accessed 31 Jul 2022

  • Strickler TL (1978) Functional osteology and myology of the shoulder in the Chiroptera. In: Hecht MK, Szalay FS (eds) Contributions to vertebrate evolution, S. Karger, New York, pp 1–198

    Google Scholar 

  • Vaughan TA (1970) The skeletal system. In: Wimsatt WA (ed) Biology of bats, vol 1. Academic Press, New York, pp 97–138

    Chapter  Google Scholar 

  • Voigt CC, Borrisov IM, Voigt-Heucke SL (2012) Terrestrial locomotion imposes high metabolic requirements on bats. J Exp Biol 215:4340–4344

    CAS  PubMed  Google Scholar 

  • Warner RM (1985) Interspecific and temporal dietary variation in an Arizona bat community. J Mamm 66:45–51

    Article  Google Scholar 

  • Whitaker JO Jr (1995) Food of the big brown bat Eptesicus fuscus from maternity colonies in Indiana and Illinois. Am Midl Nat 134:346–360

    Article  Google Scholar 

Download references

Acknowledgements

We thank Diane Johnson and Operation WildLife (Linwood, Kansas) for access to one of the bat specimens. Jordan Crawford and Dan Dutcher assisted with handling, photography, and experimental setup. Dr. Robert M. Timm (University of Kansas) provided helpful discussion and helped capture bat specimens. Megan Sims and Maria Eifler (University of Kansas) assisted with Fig. 1. We thank three anonymous reviewers for their comments and suggestions, which have greatly improved the manuscript.

Funding

This research was supported by Sigma Xi (Grant no. 20111015158354), the Paleontological Society (Ellis L. Yochelson Award), and the University of Kansas Department of Geology (Selig and Frederick T. Holden scholarships) to M.F.J.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: M.F.J., S.T.H.; methodology: M.F.J., S.T.H.; formal analysis: M.F.J., S.T.H.; investigation: M.F.J.; writing—original draft: M.F.J.; writing—review and editing: M.F.J., S.T.H.; funding acquisition: M.F.J.

Corresponding author

Correspondence to Matthew F. Jones.

Ethics declarations

Ethics approval

This research was approved by the University of Kansas Institutional Animal Care and Use Committee under animal use statement AUS 140–04.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Communicated by: Zuzanna Hałat

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (MP4 488144 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jones, M.F., Hasiotis, S.T. Terrestrial locomotor behaviors of the big brown bat (Vespertilionidae: Eptesicus fuscus). Mamm Res 68, 253–262 (2023). https://doi.org/10.1007/s13364-022-00669-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13364-022-00669-9

Keywords

Navigation