Skip to main content
Log in

A Novel Design Approach for Multi-input XOR Gate Using Multi-input Majority Function

  • Research Article - Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Great attention is paid to develop the nanotechnology fabrication techniques, but few attempts were done to develop special design techniques for the emerging nanotechnologies. In this paper, a new design approach for the multi-input XOR suitable for nanotechnologies is presented. This approach uses the multi-input majority function as a building block. The proposed method causes significant improvement in the gate level. The proposed design approach is deployed to CNFET 5-input and 7-input XOR circuit. The results show good improvements in the speed and number of devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lin, K.-J.; Wu, C.-W.: A low-cost realization of multiple-input exclusive-OR gates. In: ASIC Conference and Exhibit, 1995, Proceedings of the Eighth Annual IEEE International, pp. 307–310 (18–22 Sept 1995). doi:10.1109/ASIC.1995.580737

  2. Hsiao, S.-F.; Wen, C.-S.; Tsai, M.-Y.; Chen, M.-C.: Automatic generation of high-performance multiple-input XOR/XNOR circuits and its application in Advanced Encryption Standard (AES). In: 2010 International Symposium on Next-Generation Electronics (ISNE), pp. 77–80 (18–19 Nov. 2010). doi:10.1109/ISNE.2010.5669194

  3. Navi K., Farazkish R., Sayedsalehi S., Rahimi M.: A new quantum-dot cellular automata full-adder. Elsevier Microelectron. J. 41, 820–826 (2010). doi:10.1016/j.mejo.2010.07.003

    Article  Google Scholar 

  4. Rahimi, M.; Kavehei, O.; Navi, K.: A novel design for quantum-dot cellular automata cells and full-adders. J. Appl. Sci. 7, 3460–3468 (2007). arXiv:1204.2048

  5. Sayedsalehi S., Moaiyeri M.H., Navi K.: Novel efficient adder circuits for quantum-dot cellular automata. J. Comput. Theor. Nanosci. 8, 1769–1775 (2011). doi:10.1166/jctn.2011.1881

    Article  Google Scholar 

  6. Sahafi, A.; Moaiyeri, M.H.; Navi, K.; Hashemipour, O.: Efficient single-electron transistor inverter-based logic circuits and memory elements. J. Comput. Theor. Nanosci. 10 (2013). doi:10.1166/jctn.2013.2824

  7. Rehan, S.E.: An ANN majority logic gate (MLG) using single electron nano-devices. In: 2010 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS), pp.983–986 (6–9 Dec. 2010). doi:10.1109/APCCAS.2010.5774904

  8. Muroga S.: Threshold Logic & Its Applications. Wiley, NewYork (1971)

    MATH  Google Scholar 

  9. Feinstein, D.Y.; Thornton, M.A.: ESOP transformation to majority gates for quantum-dot cellular automata logic synthesis. In: Proceedings of the workshop on Applications of the Reed–Muller Expansion in Circuit Design and Representations and Methodology of Future Computing Technology (RMW), pp. 43-50 (May 16, 2007)

  10. Ebbesen T.W., Ajayan P.M.: Large-scale synthesis of carbon nanotubes. Nature 358, 220–222 (1992). doi:10.1038/358220a0

    Article  Google Scholar 

  11. Martel R., Schmidt T., Shea H.R., Hertel T., Avouris Ph.: Single- and multi-wall carbon nanotube field-effect transistors. Appl. Phys. Lett. 73(17), 2447–2449 (1998). doi:10.1063/1.122477

    Article  Google Scholar 

  12. Martel R., Derycke V., Lavoie C., Appenzeller J., Chan K.K., Tersoff J., Avouris Ph.: Ambipolar electrical transport in semiconducting single-wall carbon nanotubes. Phys. Rev. Lett. 87, 256805 (2001). doi:10.1103/PhysRevLett.87.256805

    Article  Google Scholar 

  13. Bradley K., Gabriel J.-C.P., Grüner G.: Flexible nanotube transistors. Nano Lett. 3, 1353–1355 (2003). doi:10.1021/nl0344864

    Article  Google Scholar 

  14. Burghard M., Klauk H., Kern K.: Carbon-based field-effect transistors for nanoelectronics. Adv. Mater. 21, 2586–2600 (2009). doi:10.1002/adma.200803582

    Article  Google Scholar 

  15. Sun D.-M., Liu C., Ren W.-C., Cheng H.-M.: A review of carbon nanotube- and graphene-based flexible thin-film transistors. Small 9, 1188–1205 (2013). doi:10.1002/smll.201203154

    Article  Google Scholar 

  16. Deng J., Wong H.-S.P.: A compact SPICE model for carbon-nanotube field-effect transistors including nonidealities and its application—Part I: model of the intrinsic channel region. IEEE Trans. Electron Devices 54(12), 3186–3194 (2007). doi:10.1109/TED.2007.909030

    Article  Google Scholar 

  17. Deng J., Wong H.-S.P.: A compact SPICE model for carbon-nanotube field-effect transistors including nonidealities and its application—Part II: full device model and circuit Performance Benchmarking. IEEE Trans. Electron Devices 54(12), 3195–3205 (2007). doi:10.1109/TED.2007.909043

    Article  Google Scholar 

  18. Lin S., Kim Y.-B., Lombardi F.: Design of a ternary memory cell using CNTFETs. IEEE Trans. Nanotechnol. 11(5), 1019–1025 (2012). doi:10.1109/TNANO.2012.2211614

    Article  Google Scholar 

  19. Moaiyeri M.H., Doostaregan A., Navi K.: Design of energy-efficient and robust ternary circuits for nanotechnology. Circuits Devices Syst. IET 5(4), 285–296 (2011). doi:10.1049/iet-cds.2010.0340

    Article  Google Scholar 

  20. Navi, K.; Sharifi, F.; Momeni, A.; Keshavarzian, P.: Ultra High Speed CNFET Full-Adder Cell Based on Majority Gates. IEICE Transactions on Electronics, (2010). DOI:10.1587/transele.E93.C.932

  21. Alkaldy E., Navi K., Sharifi F., Moaiyeri M.H.: An ultra high-speed (4;2) compressor with a new design approach for nanotechnology based on the multi-input majority function. J. Comput. Theor. Nanosci. 11, 1691–1696 (2014)

    Article  Google Scholar 

  22. Kim, Y.B.; Kim, Y.-B.; Lombardi, F.: A novel design methodology to optimize the speed and power of the CNTFET circuits. In: 52nd IEEE International Midwest Symposium on Circuits and Systems, 2009 (MWSCAS ’09), pp. 1130–1133 (2–5 Aug. 2009). doi:10.1109/MWSCAS.2009.5235967

  23. Zarhoun R., Moaiyeri M.H., Farahani S.S., Navi K.: An efficient 5-input exclusive-OR circuit based on carbon nanotube FETs. ETRI J. 36(1), 89–98 (2014)

    Article  Google Scholar 

  24. Paul, B.C.; Fujita, S.; Okajima, M.; Lee, T.H.; Wong, H.-S.P.; Nishi, Y.: Impact of a process variation on nanowire and nanotube device performance. IEEE Tran. Electron Devices 54(9), 2369–2376 (2007)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keivan Navi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alkaldy, E., Navi, K. & Sharifi, F. A Novel Design Approach for Multi-input XOR Gate Using Multi-input Majority Function. Arab J Sci Eng 39, 7923–7932 (2014). https://doi.org/10.1007/s13369-014-1387-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-014-1387-x

Keywords

Navigation