Skip to main content
Log in

A Modified Differential Evolution Algorithm for the Solution of a Large-Scale Unit Commitment Problem

  • Research Article - Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The Unit Commitment (UC) problem is a nonlinear and complex optimization problem used to determine the start-up and shutdown scheduling of power-generating units to meet the forecasted load demand and spinning reserve over a specified time horizon so that the target of production cost minimization is achieved while satisfying various system and generator-based constraints. The increase in computational burden with the system size requires more efficient meta-heuristic approaches for solving the UC problem. This paper proposes a modified differential evolution (DE) approach for both discrete and real part of the UC problem. The infeasibility of the solutions is also handled by incorporating some repairing mechanisms in DE, which forcefully satisfy the system constraints and speed up the search process. The experimentation is carried out on various standard and large power systems, starting from the 10-unit base case and then going up to 100 units over a 24 -h time period. The obtained results indicate the effectiveness of the proposed approach as compared to the previous work reported in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

N :

Number of units

\({P_i^{(t)}}\) :

Generated power for unit i at time t

\({Z_i^{(t)}}\) :

Binary variable used to represent the ON–OFF status of unit at hour t

\({a_i, b_i, c_i, e_i, f_i}\) :

Cost coefficients of i th unit (known)

\({{{\rm SC}}_i^{{{\rm (hot)}}}}\) :

Hot start cost of i th unit

CSH i :

Cold start hours of unit i

MDT i :

Minimum down time of the i th unit

\({P_{{{\rm SR}}}^{(t)}}\) :

Spinning reserve requirement at hour t

\({X_i^{({{\rm on}})}}\) :

Duration of i th unit being continuously on up to time t

I si :

The initial status of i th unit

X (t) :

Amount of violation in the spinning reserve

R (t) :

Excessive spinning reserve at hour t

PU(t) :

First unit in priority list at hour t

\({P_{({{\rm sum}})}^{(t)}}\) :

Sum of power generated by all committed units at time t

X j(min) :

Lower limit of the decision vectors

\({X_{r1}^{(G)}, X_{r2}^{( G )}, X_{r3}^{( G )}}\) :

Randomly chosen population vectors

\({C_{i,j}^{(G+1)}}\) :

Generated trial vector

\({X_i^{(G+1)}}\) :

Selected vector for the next generation

MUT:

Minimum up time

TC:

Total production cost

F :

Mutation factor

T :

Generation scheduling period in hours

\({{{\rm SC}}_i^{( t )}}\) :

Start-up cost of i th unit

\({F_i \big( {P_i^{(t)}}\big)}\) :

Operating fuel cost of i th unit at time t

P i(min) :

Minimum power generation limit of unit i

\({{{\rm SC}}_i^{({{\rm cold}})}}\) :

Cold start cost of i th unit

\({X_i^{( {{{\rm off}}})}}\) :

Duration of i th unit being continuously off up to time t

\({P_D^{(t)}}\) :

Known load demand at time t

P i(max) :

Maximum power generation limit of unit i at any time instant

MUT i :

Minimum up time of i th unit

FC i :

Full-load average production cost of i th unit

\({S_i^{(t)}}\) :

Status vector to represent the ON–OFF status of thermal units i at time t

\({P\_{{\rm list}^{(t)}}}\) :

Priority list of units at hour t

Q (t) :

Amount of deviation in the generated power at hour t

\({X_{j({{\rm max}} )}}\) :

Upper limit of the decision vectors rand Random number in the range 0-1

\({M_i^{(G+1)}}\) :

Mutant vector for the next generation

Cr:

User-defined crossover probability between 0 and 1

X M :

Mutation individual

MDT:

Minimum down time

CR:

Crossover probability

References

  1. Wood A.J., Wollenberg B.F.: Power Generation, Operation, and Control. Wiley, New York (2012)

    Google Scholar 

  2. Senjyu T., Shimabukuro K., Uezato K., Funabashi T.: A fast technique for unit commitment problem by extended priority list. IEEE Trans. Power Syst. 18(2), 882–888 (2003)

    Article  Google Scholar 

  3. Senjyu T., Miyagi T., Saber A.Y., Urasaki N., Funabashi T.: Emerging solution of large-scale unit commitment problem by stochastic priority list. Electr. Power Syst. Res. 76(5), 283–292 (2006)

    Article  Google Scholar 

  4. Su C.-C., Hsu Y.-Y.: Fuzzy dynamic programming: an application to unit commitment. IEEE Trans. Power Syst. 6(3), 1231–1237 (1991)

    Article  Google Scholar 

  5. Ouyang Z., Shahidehpour S.: An intelligent dynamic programming for unit commitment application. IEEE Trans. Power Syst. 6(3), 1203–1209 (1991)

    Article  Google Scholar 

  6. Ongsakul W., Petcharaks N.: Unit commitment by enhanced adaptive Lagrangian relaxation. IEEE Trans. Power Syst. 19(1), 620–628 (2004)

    Article  Google Scholar 

  7. Murata D., Yamashiro S.: Unit commitment scheduling by Lagrange relaxation method taking into account transmission losses. Electr. Eng. Jpn. 152(4), 27–33 (2005)

    Article  Google Scholar 

  8. Venkatesh B., Jamtsho T., Gooi H.: Unit commitment-a fuzzy mixed integer linear programming solution. IET Gener. Transm. Distrib. 1(5), 836–846 (2007)

    Article  Google Scholar 

  9. Damousis I.G., Bakirtzis A.G., Dokopoulos P.S.: A solution to the unit-commitment problem using integer-coded genetic algorithm. IEEE Trans. Power Syst. 19(2), 1165–1172 (2004)

    Article  Google Scholar 

  10. Dang C., Li M.: A floating-point genetic algorithm for solving the unit commitment problem. Eur. J. Oper. Res. 181(3), 1370–1395 (2007)

    Article  MATH  Google Scholar 

  11. Sun L., Zhang Y., Jiang C.: A matrix real-coded genetic algorithm to the unit commitment problem. Electr. Power Syst. Res. 76(9), 716–728 (2006)

    Article  Google Scholar 

  12. Yalcinoz, T.; Short, M.; Cory, B.: Application of neural networks to unit commitment. In: Africon, 1999 IEEE, pp. 649–654

  13. Yin Wa Wong S.: An enhanced simulated annealing approach to unit commitment. Int. J. Electr. Power Energy Syst. 20(5), 359–368 (1998)

    Article  Google Scholar 

  14. Juste K., Kita H., Tanaka E., Hasegawa J.: An evolutionary programming solution to the unit commitment problem. IEEE Trans. Power Syst. 14(4), 1452–1459 (1999)

    Article  Google Scholar 

  15. Yuan X., Nie H., Su A., Wang L., Yuan Y.: An improved binary particle swarm optimization for unit commitment problem. Expert Syst. Appl. 36(4), 8049–8055 (2009)

    Article  Google Scholar 

  16. Yuan X., Su A., Nie H., Yuan Y., Wang L.: Unit commitment problem using enhanced particle swarm optimization algorithm. Soft Comput. 15(1), 139–148 (2011)

    Article  Google Scholar 

  17. Khorasani J.: A new heuristic approach for unit commitment problem using particle swarm optimization. Arabian J. Sci. Eng. 37(4), 1033–1042 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  18. Mantawy A., Abdel-Magid Y.L., Selim S.Z.: Unit commitment by tabu search. IEE Proc. Gener. Trans. Distrib. 145(1), 56–64 (1998)

    Article  Google Scholar 

  19. Cheng C.-P., Liu C.-W., Liu C.-C.: Unit commitment by Lagrangian relaxation and genetic algorithms. IEEE Trans. Power Syst. 15(2), 707–714 (2000)

    Article  Google Scholar 

  20. Victoire A., Aruldoss T., Jeyakumar E.A.: A simulated annealing based hybrid optimization approach for a fuzzy modelled unit commitment problem. Int. J. Emerg. Electr. Power Syst. 3(1), 1054 (2005)

    Google Scholar 

  21. Sadati, N.; Hajian, M.; Zamani, M.: Unit commitment using particle swarm-based-simulated annealing optimization approach. In: Swarm Intelligence Symposium, 2007. SIS 2007. IEEE, 2007. pp. 297–302

  22. Kumar S.S., Palanisamy V.: A dynamic programming based fast computation Hopfield neural network for unit commitment and economic dispatch. Electr. Power Syst. Res. 77(8), 917–925 (2007)

    Article  Google Scholar 

  23. Chang C.-S.: An improved differential evolution scheme for the solution of large-scale unit commitment problems. Informatica 21(2), 175–190 (2010)

    MATH  MathSciNet  Google Scholar 

  24. Shin J.-R.: Thermal unit commitment using binary differential evolution. J. Electr. Eng. Technol. 4(3), 323–329 (2009)

    Article  Google Scholar 

  25. Chakraborty, S.; Senjyu, T.; Yona, A.; Saber, A.Y.; Funabashi, T.: Fuzzy unit commitment strategy integrated with solar energy system using a modified differential evolution approach. In: Transmission and Distribution Conference and Exposition: Asia and Pacific, 2009. pp. 1–4

  26. Govardhan, M.; Roy, R.: An application of Differential Evolution technique on unit commitment problem using Priority List approach. In: IEEE International Conference on Power and Energy (PECon), 2012 pp. 858–863

  27. Pampará, G.; Engelbrecht, A.P.; Franken, N.: Binary differential evolution. In: IEEE Congress on Evolutionary Computation, 2006. CEC 2006. pp. 1873–1879 (2006)

  28. Keles, A.: Binary differential evolution for the unit commitment problem. In: Proceedings of the 2007 GECCO Conference Companion on Genetic and Evolutionary Computation, 2007. ACM, pp. 2765–2768

  29. Patra, S.; Goswami, S.; Goswami, B.: A binary differential evolution algorithm for transmission and voltage constrained unit commitment. In: Joint International Conference on, Power System Technology and IEEE Power India Conference, 2008. POWERCON 2008. pp. 1–8

  30. Patra S., Goswami S., Goswami B.: Differential evolution algorithm for solving unit commitment with ramp constraints. Electr. Power Compon. Syst. 36(8), 771–787 (2008)

    Article  Google Scholar 

  31. Ghasemi A., Farsangi M.M., Nezamabadi-pour H.: Unit commitment scheduling using binary differential evolution algorithm. Opsearch 46(1), 108–122 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  32. Yuan X., Su A., Nie H., Yuan Y., Wang L.: Application of enhanced discrete differential evolution approach to unit commitment problem. Energy Convers. Manag. 50(9), 2449–2456 (2009)

    Article  Google Scholar 

  33. Datta D., Dutta S.: A binary-real-coded differential evolution for unit commitment problem. Int. J. Electr. Power Energy Syst. 42(1), 517–524 (2012)

    Article  Google Scholar 

  34. Vaisakh K., Srinivas L.: Evolving ant colony optimization based unit commitment. Appl. Soft Comput. 11(2), 2863–2870 (2011)

    Article  Google Scholar 

  35. Ebrahimi J., Hosseinian S.H., Gharehpetian G.B.: Unit commitment problem solution using shuffled frog leaping algorithm. IEEE Trans. Power Syst. 26(2), 573–581 (2011)

    Article  Google Scholar 

  36. Arif S., Mohammedi R., Hellal A., Choucha A.: A memory simulated annealing method to the unit commitment problem with ramp constraints. Arabian J. Sci. Eng. 37(4), 1021–1031 (2012)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nisma Saleem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saleem, N., Ahmad, A. & Zafar, S. A Modified Differential Evolution Algorithm for the Solution of a Large-Scale Unit Commitment Problem. Arab J Sci Eng 39, 8889–8900 (2014). https://doi.org/10.1007/s13369-014-1389-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-014-1389-8

Keywords

Navigation