Skip to main content
Log in

Thermodynamic Study and Optimization a Nano-Zeolite for Dehydration Liquid Fuel (DMAZ) Using Taguchi \(\hbox {L}_{16}\) Orthogonal Array

  • Research Article - Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this research, a typical molecular sieve successfully was applied to liquid fuel dimethyl amino ethyl azide (DMAZ) dehydration which was synthesized using hydrothermal method. \(\hbox {L}_{16}\) orthogonal array was used for experimental design, and the results were analyzed using analysis of variance. Initial concentration (\({C}_{0})\), shaking rate (SR), temperature (T), and adsorbent dosage (AD) as controllable parameters were varied at four levels to found their effects on the capacity of synthesized zeolite (q). The AD and \({C}_{0}\) parameters have been found to be the most significant parameter with 39.92 and 39.70% contribution to the q, respectively. The predicted and real adsorptive removal of water at optimum levels, \(C_{0}= 1.25\,\hbox {wt},\hbox { SR}=150\,\hbox {rpm, AD}=2.25\hbox { g}\), and \({T}=30\)–35 \({^{\circ }}\hbox {C}\), were found to be 208.08 and 210.2, respectively. The values of thermodynamic parameters proved that dehydration of DMAZ using this zeolite has an exothermic character, physical, and spontaneous nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Reddy, G.; Song, J.; Mecchi, M.S.; Johnson, M.S.: Genotoxicity assessment of two hypergolic energetic propellant compounds. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 700(1), 26–31 (2010)

    Article  Google Scholar 

  2. Mellor, B.: A preliminary technical review of DMAZ: a low-toxicity hypergolic fuel. In: ESA Special Publication 2004, p. 22

  3. Thompson, D.M.: Amine azides used as monopropellants. In: Google Patents (2001)

  4. Davis, M.E.; Lobo, R.F.: Zeolite and molecular sieve synthesis. Chem. Mater. 4(4), 756–768 (1992)

    Article  Google Scholar 

  5. Cundy, C.S.; Cox, P.A.: The hydrothermal synthesis of zeolites: precursors, intermediates and reaction mechanism. Microporous Mesoporous Mater. 82(1), 1–78 (2005)

    Article  Google Scholar 

  6. Castillo, J.M.; Silvestre-Albero, J.; Rodriguez-Reinoso, F.; Vlugt, T.J.; Calero, S.: Water adsorption in hydrophilic zeolites: experiment and simulation. Phys. Chem. Chem. Phys. 15(40), 17374–17382 (2013)

    Article  Google Scholar 

  7. Zolgharnein, J.; Asanjarani, N.; Shariatmanesh, T.: Taguchi L 16 orthogonal array optimization for Cd (II) removal using Carpinus betulus tree leaves: adsorption characterization. Int. Biodeterior. Biodegrad. 85, 66–77 (2013)

    Article  Google Scholar 

  8. Elizalde-González, M.; García-Díaz, L.: Application of a Taguchi L 16 orthogonal array for optimizing the removal of Acid Orange 8 using carbon with a low specific surface area. Chem. Eng. J. 163(1), 55–61 (2010)

    Article  Google Scholar 

  9. Panić, S.; Rakić, D.; Guzsvány, V.; Kiss, E.; Boskovic, G.; Kónya, Z.; Kukovecz, Á.: Optimization of thiamethoxam adsorption parameters using multi-walled carbon nanotubes by means of fractional factorial design. Chemosphere 141, 87–93 (2015)

  10. Wang, T.-Y.; Huang, C.-Y.: Improving forecasting performance by employing the Taguchi method. Eur. J. Oper. Res. 176(2), 1052–1065 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Zolfaghari, G.; Esmaili-Sari, A.; Anbia, M.; Younesi, H.; Amirmahmoodi, S.; Ghafari-Nazari, A.: Taguchi optimization approach for Pb (II) and Hg (II) removal from aqueous solutions using modified mesoporous carbon. J. Hazard. Mater. 192(3), 1046–1055 (2011)

    Article  Google Scholar 

  12. Sun, H.; Shen, B.: Effects of organic additives on crystallization process and the adsorption performances of zeolite A. Adsorption 18(2), 103–111 (2012)

    Article  Google Scholar 

  13. Mark, H.F.; McKetta, J.J.; Othmer, D.F.; Standen, A.; Kirk, R.E.: Kirk-Othmer Encyclopedia of Chemical Technology, vol. 1, 5th edn. (2004)

  14. Camblor, M.A.; Corma, A.; Valencia, S.: Synthesis in fluoride media and characterisation of aluminosilicate zeolite beta. J. Mater. Chem. 8(9), 2137–2145 (1998)

    Article  Google Scholar 

  15. Goldberg, S.; Tabatabai, M.; Sparks, D.; Al-Amoodi, L.; Dick, W.: Equations and models describing adsorption processes in soils. Chem. Process. Soils 8, 489–517 (2005)

    Google Scholar 

  16. Ambrożek, B.; Nastaj, J.; Gabruś, E.: Modeling and experimental studies of adsorptive dewatering of selected aliphatic alcohols in temperature swing adsorption system. Dry. Technol. 31(15), 1780–1789 (2013)

    Article  Google Scholar 

  17. Doulia, D.; Leodopoulos, C.; Gimouhopoulos, K.; Rigas, F.: Adsorption of humic acid on acid-activated Greek bentonite. J. Colloid Interface Sci. 340(2), 131–141 (2009)

    Article  Google Scholar 

  18. Sharma, Y.C.: Optimization of parameters for adsorption of methylene blue on a low-cost activated carbon. J. Chem. Eng. Data 55(1), 435–439 (2009)

    Article  Google Scholar 

  19. Aravindhan, R.; Fathima, N.N.; Rao, J.R.; Nair, B.U.: Equilibrium and thermodynamic studies on the removal of basic black dye using calcium alginate beads. Colloids Surf. A Physicochem. Eng. Asp. 299(1), 232–238 (2007)

    Article  Google Scholar 

  20. Roy, R.K.: A Primer on the Taguchi Method. Society of Manufacturing Engineers, Dearborn, Michigan (2010)

  21. Tan, I.; Ahmad, A.; Hameed, B.: Adsorption isotherms, kinetics, thermodynamics and desorption studies of 2, 4, 6-trichlorophenol on oil palm empty fruit bunch-based activated carbon. J. Hazard. Mater. 164(2), 473–482 (2009)

    Article  Google Scholar 

  22. Shaker, M.A.: Equilibrium, kinetics and thermodynamics studies of chitosan-based solid phase nanoparticles as sorbent for lead (II) cations from aqueous solution. Mater. Chem. Phys. 162, 580–591 (2015)

    Article  Google Scholar 

  23. Webber, T.; Chakravarti, R.: Pore and solid diffusion models for fixed bed absorbers. J. Am. Inst. Chem. Eng 20, 228–238 (1974)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahram Ghanbari Pakdehi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azizi, H.R., Pakdehi, S.G. & Babaee, S. Thermodynamic Study and Optimization a Nano-Zeolite for Dehydration Liquid Fuel (DMAZ) Using Taguchi \(\hbox {L}_{16}\) Orthogonal Array. Arab J Sci Eng 43, 2465–2472 (2018). https://doi.org/10.1007/s13369-017-2891-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-017-2891-6

Keywords

Navigation