Skip to main content
Log in

3D MHD Free Convective Stretched Flow of a Radiative Nanofluid Inspired by Variable Magnetic Field

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This paper carries on investigation to study the effects of variable magnetic field and thermal radiation on free convective flow of an electrically conducting incompressible nanofluid over an exponential stretching sheet. The model implemented in the present study significantly enriches the thermal conductivity and hence more heat transfer capability of nanofluids. The transformed governing equations have been solved numerically using fourth-order Runge–Kutta method along with shooting technique. The influence of variable magnetic field and thermal radiation associated with thermal buoyancy on the dimensionless velocity, temperature, skin friction and Nusselt number have been analyzed. The obtained numerical results in the present study are validated and found to be in excellent agreement with some previous results seen in the literature. The present study contributes to the result that augmented Hartmann number belittles the fluid flow and enhances the fluid temperature and the related thermal boundary layer thickness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

(uvw):

Velocity components in (xyz) directions (\(\hbox {m}\,\hbox {s}^{-1}\))

\(\left( {k_\mathrm{nf}, k_\mathrm{f}, k_\mathrm{s} } \right) \) :

Thermal conductivities of (nanofluid, base fluid, nanoparticle) (\(\hbox {W}\,\hbox {m}^{-1}\,\hbox {K}^{-1}\))

\(\left( {\mu _\mathrm{nf}, \mu _\mathrm{f} } \right) \) :

Effective viscosity of (nanofluid, base fluid)

\(\left( {\sigma _\mathrm{nf}, \sigma _\mathrm{f} } \right) \) :

Effective viscosity of (nanofluid, base fluid)

\(\left( {{F}'(\eta ), {G}'(\eta ), \theta \left( \eta \right) } \right) \) :

Dimensionless (axial velocity, transverse velocity and temperature)

\(\left( {\beta _\mathrm{f} , \beta _\mathrm{s} } \right) \) :

Thermal expansion of (base fluid and nanoparticles)

\((U_0 ,V_0 ,U_\mathrm{w} ,V_\mathrm{w} ,c)\) :

Constants

\(\left( {\rho C_\mathrm{p} } \right) _\mathrm{f} \) :

Heat capacitance of base fluid (\(\hbox {J}\,\hbox {m}^{-3}\,\hbox {K}^{-1}\))

\(\left( {A_\mathrm{s} , A_\mathrm{f} } \right) \) :

Heat transfer area corresponding to (particles and fluid)

\(\upsilon _\mathrm{f}\) :

Dynamic viscosity \((\hbox {m}^{2}\,\hbox {s}^{-1}\))

T :

Temperature of fluid (\(\hbox {K}\))

\(T_\mathrm{w}\) :

Surface temperature (\(\hbox {K}\))

L :

Reference length (\(\hbox {m}\))

\(B_0 \) :

Uniform magnetic field strength

\(k^{*}\) :

Mean absorption coefficient

\(\left( {\rho C_\mathrm{p} } \right) _\mathrm{nf}\) :

Heat capacitance of nanofluid (\(\hbox {J}\,\hbox {m}^{-3}\,\hbox {K}^{-1}\))

\(\left( {\tau _{wx},\tau _{wy} } \right) \) :

Wall shear stresses

\(\rho _\mathrm{s} \) :

Density of nanoparticles (\(\hbox {kg}\,\hbox {m}^{-3}\))

\(\mu _\mathrm{f} \) :

Dynamic viscosity of base fluid (\(\hbox {NS}\,\hbox {m}^{-2}\))

M :

Hartmann number

Pr :

Prandtl number

\(q_\mathrm{w} \) :

Wall heat flux

\(u_\mathrm{s} \) :

Brownian motion velocity of nanoparticles

\(\left( {C_{fx} , C_{fy} } \right) \) :

Skin frictions

\(\phi \) :

Solid volume fraction

\(\left( {\textit{Re}_x , \textit{Re}_y } \right) \) :

Local Reynolds number

\(T_\infty \) :

Ambient fluid temperature (\(\hbox {K}\))

\(\alpha _\mathrm{f} \) :

Thermal diffusivity of the fluid

Pe :

Peclet number

\(\sigma ^{*}\) :

Stefan–Boltzmann constant(\(\hbox {W}\,\hbox {m}^{-2}\,\hbox {K}^{-4}\))

\(\rho _\mathrm{nf}\) :

Effective density of nanofluid (\(\hbox {kg}\,\hbox {m}^{-3}\))

\(\rho _\mathrm{f} \) :

Density of base fluid (\(\hbox {kg}\,\hbox {m}^{-3}\))

g :

Acceleration due to gravity

\(\mu _\mathrm{nf}\) :

Dynamic viscosity (\(\hbox {N}\,\hbox {S}\,\hbox {m}^{-2}\))

\(\eta \) :

Non-dimensional vertical distance

\(d_\mathrm{s} \) :

Nanoparticle diameter

Rd :

Radiation parameter

\(d_\mathrm{f} \) :

Molecular size of the fluid

\(\left( {\rho C_\mathrm{p} } \right) _\mathrm{s} \) :

Heat capacitance (\(\hbox {J}\,\hbox {m}^{-3}\hbox {K}^{-1}\))

nf:

Nanofluid

f:

Fluid

w:

Quantities at wall

p:

Particle

s:

Surface

\(\infty \) :

Quantities at free stream

\(\phi \) :

Solid volume fraction

\(\eta \) :

Distance from the leading edge of the plate

\(\rho _{f}\) :

Density of the fluid

\(\sigma \) :

Electrically conductivity

References

  1. Crane, L.J.: Flow past a stretching plate. J. Appl. Math. Phys. 21, 645–647 (1970)

    Google Scholar 

  2. Wang, C.Y.: Three-dimensional flow due to a stretching flat surface. Phys. Fluids 27, 1915–1917 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  3. Lakshmisha, K.N.; Venkateswaran, S.; Nath, G.: Three-dimensional unsteady flow with heat and mass transfer over a continuous stretching surface. ASME J. Heat Transf. 110, 590–595 (1988)

    Article  Google Scholar 

  4. Rashad, A.M.; Chamkha, A.J.; El-Kabeir, S.M.M.: Effect on chemical reaction on heat and mass transfer by mixed convection flow about a sphere in a saturated porous medium. Int. J. Numer. Method Heat Fluid Flow 21, 418–433 (2011)

    Article  Google Scholar 

  5. Choi, S.U.S.: Enhancing thermal conductivity of fluids with nanoparticles. ASME Fluids Eng. Div. 231, 99–105 (1995)

    Google Scholar 

  6. Hamilton, R.L.; Crosser, O.K.: Thermal conductivity of heterogeneous two component systems. EC Fundam. 1, 187–191 (1962)

    Article  Google Scholar 

  7. Maxwell, J.C.: A Treatise on Electricity and Magnetism, 2nd edn, pp. 435–441. Oxford University Press, Cambridge (1904)

    Google Scholar 

  8. Khan, W.; Pop, I.: Boundary-layer flow of a nanofluid past a stretching sheet. Int. J. Heat Mass Transf. 53, 2477–2483 (2010)

    Article  MATH  Google Scholar 

  9. Mabood, F.; Shateye, S.; Rashidi, M.M.; Momoniat, E.; Freidoonimehr, N.: MHD stagnation point flow heat and mass transfer of nanofluids in porous medium with radiation, viscous dissipation and chemical reaction. Adv. Powder Technol. 27, 742–749 (2016)

    Article  Google Scholar 

  10. Hayat, T.; Qayyum, S.; Imtiaz, M.; Alsaedi, A.: Comparative study of silver and copper water nanofluids with mixed convection and non-linear thermal radiation. Int. J. Heat Mass Transf. 102, 723–732 (2016)

    Article  Google Scholar 

  11. Hayat, T.; Imtiaz, M.; Alsaedi, A.; Kutbi, M.A.: MHD three-dimensional flow of nanofluid with velocity slip and non-linear thermal radiation. J. Magn. Magn. Mater. 396, 31–37 (2015)

    Article  Google Scholar 

  12. Du, M.; Tang, G.H.: Plasmonic nanofluids based on gold nanorods/nanoellipsoids/nanosheets for solar energy harvesting. Sol. Energy 137, 393–400 (2016)

    Article  Google Scholar 

  13. Du, M.; Tang, G.H.: Optical property of nanofluids with particle agglomeration. Sol. Energy 122, 864–872 (2015)

    Article  Google Scholar 

  14. Alsabery, A.; Chamkha, A.J.; Hashim, I.: Heatline visualization of conjugate natural convection in a square cavity filled with nanofluid with sinusoidal temperature variations on both horizontal walls. Int. J. Heat Mass Transf. 100, 835–850 (2016)

    Article  Google Scholar 

  15. Zargartalebi, H.; Ghalambaz, M.; Noghrehabadi, A.; Chamkha, A.J.: Natural convection of a nanofluid in an enclosure with inclined local thermal non-equilibrium porous fin considering Buongiorno’s model. Numer. Heat Transf. A 70, 432–445 (2016)

    Article  Google Scholar 

  16. Farooq, M.; Khan, M.I.; Waqas, M.; Hayat, T.; Alsaedi, A.: MHD stagnation point flow of viscoelastic nanofluid with non-linear radiation effects. J. Mol. Liq. 221, 1097–1103 (2016)

    Article  Google Scholar 

  17. Nayak, M.K.; Dash, G.C.; Singh, L.P.: Steady MHD flow and heat transfer of a third grade fluid in wire coating analysis with temperature dependent viscosity. Int. J. Heat Mass Transf. 79, 1087–1095 (2014)

    Article  Google Scholar 

  18. Hayat, T.; Muhammad, T.; Qayyum, A.; Alsaedi, A.; Mustafa, M.: On squeezing flow of nanofluid in the presence of magnetic field effects. J. Mol. Liq. 213, 179–185 (2016)

    Article  Google Scholar 

  19. Reddy, S.; Chamkha, A.J.: Influence of size, shape, type of nanoparticles, type and temperature of the base fluid on natural convection MHD of nanofluids. Alexandria Eng. J. 55, 331–341 (2016)

    Article  Google Scholar 

  20. Sheikholeslami, M.; Hatami, M.; Ganji, D.D.: Nanofluid flow and heat transfer in a rotating system in the presence of a magnetic field. J. Mol. Liq. 190, 112–120 (2014)

    Article  Google Scholar 

  21. Reddy, S.; Chamkha, A.J.: Soret and Dufour effects on MHD convective flow of \(\text{ Al }_{2}\text{ O }_{3}\)-water and \(\text{ TiO }_{2}\)-water nanofluids past a stretching sheet in porous media with heat generation/absorption. Adv. Powder Technol. 27, 1207–1218 (2016)

    Article  Google Scholar 

  22. Nadeem, S.; Haq, R.U.; Khan, Z.H.: Heat transfer analysis of water-based nanofluid over an exponentially stretching sheet. Alexandria Eng. J. 53(1), 219–224 (2014)

    Article  Google Scholar 

  23. Hayat, T.; Shafique, M.; Tanveer, A.; Alsaedi, A.: Magnetohydrodynamic effects on peristaltic flow of hyperbolic tangent nanofluid with slip conditions and Joule heating in an inclined channel. Int. J. Heat Mass Transf. 102, 54–63 (2016)

    Article  Google Scholar 

  24. Makinde, O.D.; Animasaun, I.L.: Bioconvection in MHD nanofluid flow with nonlinear thermal radiation and quartic autocatalysis chemical reaction past an upper surface of a paraboloid of revolution. Int. J. Ther. Sci. 109, 159–171 (2016)

    Article  Google Scholar 

  25. Khan, W.A.; Makinde, O.D.; Khan, Z.H.: Non-aligned MHD stagnation point flow of variable viscosity nanofluids past a stretching sheet with radiative heat. Int. J. Heat Mass Transf. 96, 525–534 (2016)

    Article  Google Scholar 

  26. Nayak, M.K.: Chemical reaction effect on MHD viscoelastic fluid over a stretching sheet through porous medium. Meccanica 51, 1699–1711 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  27. Hayat, T.; Iqbal, R.; Tanveer, A.; Alsaedi, A.: Influence of convective conditions in radiative peristaltic flow of pseudo-plastic nanofluid in a tapered asymmetric channel. J. Magn. Magn. Mater. 408, 168–176 (2016)

    Article  Google Scholar 

  28. Nayak, M.K.; Dash, G.C.; Singh, L.P.: Unsteady radiative MHD free convective flow and mass transfer of a viscoelastic fluid past an inclined porous plate. Arab. J. Sci. Eng. 40, 3029–3039 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  29. Nayak, M.K.; Akbar, N.S.; Pandey, V.S.; Khan, Z.H.; Tripathi, D.: 3D free convective MHD flow of nanofluid over permeable linear stretching sheet with thermal radiation. Powder Technol. 315, 205–215 (2017)

    Article  Google Scholar 

  30. Nayak, M.K.; Akbar, N.S.; Pandey, V.S.; Khan, Z.H.; Tripathi, D.: MHD 3D free convective flow of nanofluid over an exponential stretching sheet with chemical reaction. Adv. Powder Technol. 28(9), 2159–2166 (2017)

    Article  Google Scholar 

  31. Nayak, M.K.: MHD 3D flow and heat transfer analysis of nanofluid by shrinking surface inspired by thermal radiation and viscous dissipation. Int. J. Mech. Sci. 124–125, 185–193 (2017)

    Article  Google Scholar 

  32. Nayak, M.K.; Akbar, N.S.; Pandey, V.S.; Tripathi, D.: Three dimensional MHD flow of nanofluid over an exponential stretching sheet with convective boundary conditions. Thermal Sci. Eng. Prog. 3, 133–140 (2017)

  33. Nayak, M.K.; Shaw, S.; Pandey, V.S.; Chamkha, A.J.: Combined effects of slip and convective boundary condition on MHD 3D stretched flow of nanofluid through porous media inspired by non-linear thermal radiation. Indian J. Phys. (2018). https://doi.org/10.1007/s12648-018-1188-2

    Google Scholar 

  34. Nayak, M.K.; Shaw, S.; Chamkha, A.J.: Radiative non linear heat transfer analysis on wire coating from a bath of third-grade fluid. Therm. Sci. Eng. Prog. 5, 97–106 (2017)

    Article  Google Scholar 

  35. Patel, H.E.; Sundararajn, T.; Pradeep, T.; Dasgupta, A.; Dasgupta, N.; Das, S.K.: A micro-convection model for thermal conductivity of nanofluids. Pramana J. Phys. 65, 863–869 (2005)

    Article  Google Scholar 

  36. Brewster, M.Q.: Thermal Radiative Transfer Properties. Wiley, New York (1972)

    Google Scholar 

  37. Liu, I.-C.; Wang, H.-H.; Peng, A.: Flow and heat transfer for three-dimensional flow over an exponentially stretching surface. Chem. Eng. Commun. 200, 253–268 (2013)

    Article  Google Scholar 

  38. Pak, B.C.; Cho, Y.I.: Hydromagnetic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp. Heat Transf. 11, 151–171 (1998)

    Article  Google Scholar 

  39. Govindaraju, M.; ganesh, N.V.; Ganga, B.; Hakeem, A.A.: Entropy generation analysis of magnetohydrodynamic flow of a nanofluid over a stretching sheet. J. Egypt Math. Soc. 23(2), 429–434 (2014)

    Article  MATH  Google Scholar 

  40. Pourmehran, O.; Rahimi-Gorji, M.; Ganji, D.D.: Heat transfer and flow analysis of nanofluid flow induced by a stretching sheet in the presence of an external magnetic field. J. Taiwan Inst. Chem. Eng. 65, 162–171 (2016)

    Article  Google Scholar 

  41. Seddeek, M.A.; Odda, S.N.; Akl, M.Y.; Abdelmeguid, M.S.: Analytical solution for the effect of radiation on flow of a magneto-micropolar fluid past a continuously moving plate with suction and blowing. Comput. Mater. Sci. 45, 423–428 (2009)

    Article  Google Scholar 

  42. Hemalatha, K.; Kameshwaran, P.; Madhavi, M.V.D.N.S.: Mixed convective heat transfer from a vertical plate embedded in a saturated non-Darcy porous medium with concentration and melting effect. Sadhana 40, 455–465 (2015)

    Article  MathSciNet  Google Scholar 

  43. Akbar, N.S.; Tripathi, D.; Khan, Z.H.; Bég, O.A.: A numerical study of magnetohydrodynamic transport of nanofluids over a vertical stretching sheet with exponential temperature-dependent viscosity and buoyancy effects. Chem. Phys. Lett. 661, 20–30 (2016)

    Article  Google Scholar 

  44. Nadeem, S.; Haq, R.U.; Khan, Z.H.: Heat transfer analysis of water-based nanofluid over an exponentially stretching sheet. Alexandria Eng. J. 53, 219–224 (2014)

    Article  Google Scholar 

  45. Imtiaz, M.; Hayat, T.; Alsaedi, A.: Flow of magneto nanofluid by a radiative exponentially stretching surface with dissipation effect. Adv. Powder Technol. 27(5), 2214–2222 (2016)

    Article  Google Scholar 

  46. Liu, C.; Hung-H, W.; Yih-F, P.: Flow and heat transfer for three-dimensional flow over an exponentially stretching surface. Chem. Eng. Commun. 200, 253–268 (2013)

    Article  Google Scholar 

  47. Magyari, E.; Keller, B.: Heat and mass transfer in the boundary layers on an exponentially stretching continuous surface. J. Phys. D Appl. Phys. 32, 577–585 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. K. Nayak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nayak, M.K., Shaw, S. & Chamkha, A.J. 3D MHD Free Convective Stretched Flow of a Radiative Nanofluid Inspired by Variable Magnetic Field. Arab J Sci Eng 44, 1269–1282 (2019). https://doi.org/10.1007/s13369-018-3473-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-018-3473-y

Keywords

Navigation