Skip to main content
Log in

Multi-objective Optimization of Wire Electrical Discharge Machining Process Parameters for Al5083/7%\({\hbox {B}}_{4}{\hbox {C}}\) Composite Using Metaheuristic Techniques

  • Research Article - Physics
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Metal matrix composites have become a vital concern for the modern manufacturing companies due to some of their special properties. The presence of reinforcement makes them difficult in machining operations to achieve industrial requirements. Therefore, it is necessary to optimize the machining process parameters to improve output performance in terms of product quality. The overall performance of the wire electrical discharge machining (WEDM) process is influenced by various parameters, such as pulse-on time, pulse-off time, induced current, and wire-feed. WEDM is one of the non-traditional machining processes. It machines only electrically conducting materials and machines the surfaces by the thermo-electrical process. During machining of composites, material removal rate, cutting speed, and surface roughness have been considered for this research. The relation between the process parameters and the output responses is developed by using linear regression analysis through Minitab-17. The experiments conducted are dependent on Taguchi \({\hbox {L}}_{25}\) orthogonal array. The optimized sets of process parameters are obtained by using teaching and learning-based optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rao, R.V.; Pawar, P.J.: Modelling and optimization of process parameters of wire electrical discharge machining. J. Eng. Manuf. 223, 1431–1440 (2009)

    Article  Google Scholar 

  2. Kuppan, P.; Rajadurai, A.; Narayanan, S.: Influence of EDM process parameters in deep hole drilling of Inconel 718. Int. J. Adv. Manuf. Technol. 38, 74–84 (2008)

    Article  Google Scholar 

  3. Rajesha, S.; Sharma, A.K.; Kumar, P.: On electro-discharge machining of Inconel 718 with hollow tool. J. Mater. Eng. Perform. 21, 882–891 (2012)

    Google Scholar 

  4. Ramakrishnan, R.; Karunamoorthy, L.: Modelling and multi-response optimization of Inconel 718 on machining of CNC WEDM process. J. Mater. Process. Technol. 207, 343–349 (2008)

    Article  Google Scholar 

  5. Dey, A.; Debnath, S.; Pandey, K.M.: Optimization of electrical discharge machining process parameters for Al6061/cenosphere composite using grey-based hybrid approach. Trans. Nonferr. Met. Soc. China 27, 998–1010 (2017)

    Article  Google Scholar 

  6. Dhinesh, K.; Sivakumar, M.; Sivakumar, K.; Kumar, M.: Optimization of wire EDM process parameters of Al 6061/Al2O3/3% red mud MMC. IJETCSE 22, 58–63 (2016)

    Google Scholar 

  7. Rao, R.V.; Kalyankar, V.D.: Parameter optimization of modern machining processes using teaching-learning-based optimization algorithm. Eng. Appl. Artif. Intell. 26, 524–553 (2013)

    Article  Google Scholar 

  8. Sarkar, S.; Mitra, S.; Bhattacharyya, B.: Parametric analysis and optimization of wire electrical discharge machining of G-titanium aluminide alloy. J. Mater. Process. Technol. 159, 286–294 (2005)

    Article  Google Scholar 

  9. Shandilya, P.; Jain, P.K.: Genetic algorithm based optimization during wire electric discharge machining of metal matrix composite. In: Annals of DAAAM for 2012 & Proceedings of the 23rd International DAAAM Symposium, vol. 23, pp. 401–404 (2012)

  10. Prabhu, S.; Vinayagam, B.K.: AFM nano analysis of Inconel 825 with single-wall carbon nanotube in die sinking EDM process using Taguchi analysis. Arab. J. Sci. Eng. 38, 1599–1613 (2013)

    Article  Google Scholar 

  11. Assarzadeh, S.; Ghoreishi, M.: Statistical modeling and optimization of process parameters in electro-discharge machining of cobalt-bonded tungsten carbide composite (WC/6%Co). Procedia CIRP 6, 463–468 (2013)

    Article  Google Scholar 

  12. Gangadharudu, T.; Sahoo, D.K.; Gangopadhyay, S.; Biswas, C.K.: Modeling and multi-objective optimization of powder mixed electric discharge machining process of aluminum/alumina metal matrix composite. JESTECH 18, 369–373 (2015)

    Google Scholar 

  13. Kanlayasiri, K.; Boonmung, S.: Effects of wire-EDM machining variables on surface roughness of newly developed DC 53 die steel: Design of experiments and regression model. J. Mater. Process. Technol. 192–193, 459–464 (2007)

    Article  Google Scholar 

  14. Tosun, N.; Cogun, C.; Inan, A.: The effect of cutting parameters on workpiece surface roughness in wire EDM. Mach. Sci. Technol. 7, 209–219 (2003)

    Article  Google Scholar 

  15. Huang, J.T.; Liao, Y.S.: Optimization of machining parameters of Wire-EDM based on grey relational and statistical analyses. Int. J. Prod. Res. 41, 1707–1720 (2003)

    Article  MATH  Google Scholar 

  16. Tarng, Y.S.; Ma, S.C.; Chung, L.K.: Determination of optimal cutting parameters in wire electrical discharge machining. Int. J. Mach. Tools Manuf. 35, 1693–1700 (1995)

    Article  Google Scholar 

  17. Karaboga, D.; Basturk, B.: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J. Global Optim. 39, 459–471 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Karaboga, D.; Basturk, B.: On the performance of artificial bee colony (ABC) algorithm. Appl. Soft Comput. 8, 687–697 (2008)

    Article  Google Scholar 

  19. Ferraris, E.; Castiglioni, V.; Ceyssens, F.; Annoni, M.; Lauwers, B.; Reynaerts, D.: EDM Drilling of ultra-high aspect ratio micro holes with insulated tools. CIRP Ann. Manuf. Technol. 62, 191–194 (2013)

    Article  Google Scholar 

  20. Ross, P.J.: Taguchi Techniques for Quality Engineering: Loss Function, Orthogonal Experiments, Parameter and Tolerance Design. McGrew-Hill, New York (1996)

    Google Scholar 

  21. Konda, R.; Rajurkar, K.P.; Bishu, R.R.; Guha, A.; Parson, M.: Design of experiments to study and optimize process performance. Int. J. Qual. Reliab. Manag. 16, 56–71 (1999)

    Article  Google Scholar 

  22. Montgomery, D.C.: Design and Analysis of Experiments. Wiley, New York (1997)

    MATH  Google Scholar 

  23. Rao, R.V.; Savsani, V.J.; Vakharia, D.P.: Teaching-learning-based optimization: a novel method for constrained mechanical design optimization problems. Comput. Aided Design 43, 303–315 (2011)

    Article  Google Scholar 

  24. Rao, R.V.; Savsani, V.J.; Vakharia, D.P.: Teaching-learning-based optimization: an optimization method for continuous non-linear large-scale problem. Inf. Sci. 183, 1–15 (2012)

    Article  MathSciNet  Google Scholar 

  25. Rao, R.V.; Patel, V.: An elitist teaching-learning-based optimization algorithm for solving complex constrained optimization problems. IJIEC 3, 535–560 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malik Shadab.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shadab, M., Singh, R. & Rai, R.N. Multi-objective Optimization of Wire Electrical Discharge Machining Process Parameters for Al5083/7%\({\hbox {B}}_{4}{\hbox {C}}\) Composite Using Metaheuristic Techniques. Arab J Sci Eng 44, 591–601 (2019). https://doi.org/10.1007/s13369-018-3491-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-018-3491-9

Keywords

Navigation