Skip to main content
Log in

Construction of an Active Atomic Mirror via Quadrupole Transition

  • Research Article-Physics
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this work, an atomic mirror scheme that operates by both quadrupole interaction and evanescent light field is suggested and evaluated. This type of light mode is normally created via the total internal reflection process of laser light beam at the interface of a dielectric medium with a vacuum region. Under the quantum atomic rules in which quadrupole interaction is permissible, we show the optical quadrupole potential and the resulting reflection process of cesium atoms. The efficiency of the atomic reflection process can be enhanced by coating the dielectric surface with a thin metallic film. This increases the magnitude of the evanescent light field and simultaneously reduces the atom–surface attraction, which is considered one of the most prominent obstacles to the atomic reflection process. The performance of the atomic mirror action and some related factors controlling the enhancement in general are pointed out and discussed in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Loudon, R.: The Quantum Theory of Light. Oxford Science, New York (2000)

    MATH  Google Scholar 

  2. Cohen-Tannoudji, C.; Gury-Odelin, D.: Advances in Atomic Physics: An Overview. World Scientific, Singapore (2011)

    Book  MATH  Google Scholar 

  3. Lembessis, V.; Babiker, M.: Enhanced quadrupole effects for atoms in optical vortices. Phys. Rev. Lett. 110, 083002 (2013)

    Article  Google Scholar 

  4. Al-Awfi, S.: The influences of quadrupole-active transitions for atoms in Bessel light modes. J. Korean Phys. Soc. 64, 1110–1115 (2014)

    Article  Google Scholar 

  5. Hu, S.-M.; Pan, H.; Cheng, C.-F.; Sun, Y.R.; Li, X.-F.; Wang, J.; Campargue, A.; Liu, A.-W.: The v = 3 < – 0 S(0)-S(3) electric quadrupole transitions of H2 near 0.8 μm. Astrophys. J. 749, 76–81 (2012)

    Article  Google Scholar 

  6. Tojo, S.; Hasuo, M.; Fujimoto, T.: Absorption enhancement of an electric quadrupole transition of cesium atoms in an evanescent field. Phys. Rev. Lett. 92, 053001 (2004)

    Article  Google Scholar 

  7. Kern, A.M.; Martin, O.J.F.: Strong enhancement of forbidden atomic transitions using plasmonic nanostructures. Phys. Rev. A 85, 022501 (2012)

    Article  Google Scholar 

  8. Kern, A.M.; Martin, O.J.F.: Excitation and reemission of molecules near realistic plasmonic nanostructures. Nano Lett. 11, 482–487 (2011)

    Article  Google Scholar 

  9. Klimov, V.V.; Letokhov, V.S.: Quadrupole radiation of an atom in the vicinity of a dielectric microsphere. Phys. Rev. A 54, 4408 (1996)

    Article  Google Scholar 

  10. Esslinger, T.; Weidemüller, M.; Hammerich, M.; Hänch, T.W.: Surface-plasmon mirror for atoms. Opt. Lett. 18, 450–452 (1993)

    Article  Google Scholar 

  11. Dowling, J.P.; Gea-Banacloche, J.: Evanescent light-wave atom mirrors, resonators, waveguides, and trap. Adv. At., Mol., Opt. Phys. 37, 1–94 (1997)

    Google Scholar 

  12. Bennett, C.; Kirk, J.; Babiker, M.: Theory of evanescent mode atomic mirrors with a metallic layer. Phys. Rev. A 63, 033405 (2001)

    Article  Google Scholar 

  13. Baohua, J.; Xiaosong, G.; Min, G.: Strong tangential force within a small trapping volume under near-field Laguerre-Gaussian beam illumination. Opt. Exp. 16, 15191–15197 (2008)

    Article  Google Scholar 

  14. Thomson, L.C.; Whyte, G.; Mazilu, M.; Courtial, J.: Simulated holographic three-dimensional intensity shaping of evanescent-wave fields. J. Opt. Soc. Am. B 25, 849 (2008)

    Article  Google Scholar 

  15. Djenan, G.; Xiaosong, G.; Min, G.: Trapping force and optical lifting under focused evanescent wave illumination. Opt. Exp. 12, 5533–5538 (2004)

    Article  Google Scholar 

  16. Lembessis, V.E.; Babiker, M.; Andrews, D.L.: Surface optical vortices. Phys. Rev. A 79, 01 (1806)

    Google Scholar 

  17. Allen, L.; Beijersbergen, M.W.; Spreeuw, R.J.C.; Woerdman, J.P.: Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A 45, 8185 (1992)

    Article  Google Scholar 

  18. Al-Awfi, S.: Formation of a plasmonic surface optical vortex evanescent bessel light. Plasmonics 8, 529–536 (2013)

    Article  Google Scholar 

  19. Babiker, M.; Power, W.L.; Allen, L.: Light-induced torque on moving atoms. Phys. Rev. Lett. 73, 1239 (1994)

    Article  Google Scholar 

  20. Durnin, J.; Miceli, J.; Eberly, J.: Diffraction-free beams. Phys. Rev. Lett. 58, 1499 (1987)

    Article  Google Scholar 

  21. Durnin, J.: Exact solutions for non-diffracting beams. I. The scalar theory. Opt. Soc. Am. A Opt. Image Sci. 4, 651–654 (1987)

    Article  Google Scholar 

  22. Mcgloin, D.; Dholakia, K.: Bessel beams: diffraction in a new light. Contemp. Phys. 46, 15–28 (2005)

    Article  Google Scholar 

  23. Zhu, Y.; Liu, X.J.; Gao, J.; Zhang, Y.X.; Zhao, F.S.: Probability density of the orbital angular momentum mode of Hankel–Bessel beams in an atmospheric turbulence. Opt. Exp. 22, 7765–7772 (2014)

    Article  Google Scholar 

  24. Sakai, K.; Nomura, K.; Yamamoto, T.; Omura, T.; Sasaki, K.: Quadrupole lattice resonances in plasmonic crystal excited by cylindrical. Sci. Rep. 6, 34967–34973 (2016)

    Article  Google Scholar 

  25. Sakai, K.; Yamamoto, T.; Sasaki, K.: Nanofocusing of structured light for quadrupolar light-matter interaction. Sci. Rep. 8, 7746 (2018)

    Article  Google Scholar 

  26. Ou, J.; Jiang, Y.; Zhang, Y.X.; Tang, H.; He, Y.; Wang, S.; Liao, J.: Spreading of spiral spectrum of Bessel-Gaussian beam in non-Kolmogorov turbulence. Opt. Commun. 318, 95–99 (2014)

    Article  Google Scholar 

  27. Li, Y.; Zhang, Y.X.: Effects of strong turbulence on the spiral plane mode of Whittaker-Gaussian beam through terrene-atmosphere. Chin. Phys. Lett. 33, 054205 (2016)

    Article  Google Scholar 

  28. Hinds, E.: Cavity quantum electrodynamics. Adv. At., Mol., Opt. Phys. 28, 237–289 (1991)

    Article  Google Scholar 

  29. Kirk, J.; Bennett, C.; Babiker, M.; Al-Awfi, S.: Atomic reflection of evanescent light un the presence of a metallic sheet. Phys. Low. Dimens. Struct. 3(4), 127–138 (2002)

    Google Scholar 

  30. Al-Awfi, S.: Enhanced quadrupole effects for atoms in optical lattices. Indian J. Phys. 89, 539–544 (2015)

    Article  Google Scholar 

  31. Zheng-Ling, W.; Jiang-Ping, Y.: Average dissipative and dipole forces on a three-level atom in a Laguerre–Gaussian beam. Chin. Phys. Lett. 22, 1386–1389 (2005)

    Article  Google Scholar 

  32. Taillandier-Loize, T.; Baudon, J.; Dutier, G.; Perales, F.; Boustimi, M.; Ducloy, M.: Anisotropic atom-surface interactions in the Casimir-Polder regime. Phys. Rev. A 89, 052514 (2014)

    Article  Google Scholar 

  33. Fickler, R.; Lapkiewicz, R.; Plick, W.N.; Krenn, M.; Schaeff, C.; Ramelow, S.; Zeilinger, A.: Quantum entanglement of high angular momenta. Science 338, 640–643 (2012)

    Article  Google Scholar 

  34. Babiker, M.; Andrews, D.L.; Lembessis, V.E.: Atoms in complex twisted light. J. Opt. 21, 013001 (2019)

    Article  Google Scholar 

  35. Sakai, K.; Nomura, K.; Yamamoto, T.; Sasaki, K.: Excitation of multipole plasmons by optical vortex beams. Sci. Rep. 5, 8431 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Al-Awfi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Awfi, S. Construction of an Active Atomic Mirror via Quadrupole Transition. Arab J Sci Eng 46, 705–712 (2021). https://doi.org/10.1007/s13369-020-04743-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04743-9

Keywords

Navigation