Skip to main content

Advertisement

Log in

Radiused Edge Blade Tip for a Wider Operating Range in Wells Turbine

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The narrow operating range of a Wells turbine restricts its energy extraction capability from the ocean waves. In this work, the concept of a radiused edge tip blade (RETB) was introduced to overcome such an issue. The RET modifies the tip and changes the tip leakage flow behaviour. The flow through the turbine annulus was simulated numerically and compared with the existing experimental results of the reference turbine. Three-dimensional Reynolds-averaged Navier–Stokes equations with a two-equation turbulence closure model available in ANSYS CFX 14.5 was used for the simulations. The computational domain was discretized with unstructured tetrahedral elements, and the grid independence study gave an optimal grid. The RETB altered the tip leakage flow characteristics and delayed the stall inception. The RETB enhanced the relative operating range by 25% and peak torque by 37%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

C :

Chord length (mm)

Cp:

Pressure coefficient (–)

e 21a , e 32a :

Approximate relative error

\( e_{\text{ext}}^{21} \), \( e_{\text{ext}}^{32} \) :

Extrapolated relative error

\( H = \frac{{R_{\text{hub}} }}{{R_{\text{tip}} }} \) :

Hub to tip ratio (–)

I :

Turbulence intensity (–)

k :

Turbulence kinetic energy (m2/s2)

p :

Pressure (Pa)

Q :

Volume flow rate (m3/s)

y + :

Non-dimensional wall distance (–)

U T :

Peripheral blade velocity (m/s)

V 1 :

Absolute inlet velocity (m/s)

W 1 :

Relative inlet velocity (m/s)

Z :

Number of blades (–)

α :

Angle of attack (°)

ν:

Kinematic viscosity (m2/s)

\( \phi_{\text{ext}}^{12} \), \( \phi_{\text{ext}}^{32} \) :

Extrapolated values

∈:

Turbulence dissipation rate (m2/s3)

\( \eta = \frac{T\omega }{{Q\Delta p_{o} }} \) :

Efficiency (–)

ρ :

Density (kg/m3)

\( \sigma = \frac{Zc}{{2\pi R_{\text{mid}} }} \) :

Solidity (–)

ω :

Angular velocity (rad/s)

LE:

Leading edge

OWC:

Oscillating water column

PS:

Pressure side

RANS:

Reynolds-averaged Navier–Stokes

RET:

Radiused edge tip

RETB:

Radiused edge tip blade

SET:

Sharp edge tip blade

SS:

Suction side

SST:

Shear stress transport

TE:

Trailing edge

TKE:

Turbulence kinetic energy (m2/s2)

WECS:

Wave energy conversion system

r :

Grid refinement factor

R hub :

Blade hub radius (mm)

\( R_{\text{mid}} = \frac{{\left( {R_{\text{tip}} + R_{\text{hub}} } \right)}}{2} \) :

Radius of blade midspan (mm)

R tip :

Blade tip radius (mm)

T :

Torque (N m)

\( T^{*} = \frac{T}{{\rho \omega^{2} R_{\text{tip}}^{5} }} \) :

Torque coefficient (–)

\( U^{*} = \frac{{U_{A} }}{{U_{\text{tip}} }} \) :

Flow coefficient (–)

U A :

Inlet axial velocity (m/s)

U tip :

Blade tip velocity (m/s)

V :

Absolute velocity (m/s)

w :

Specific dissipation rate (s−1)

w bl :

Blade specific work (m2/s2)

W :

Relative velocity (m/s)

References

  1. Mustapa, M.A.; Yaakob, O.B.; Ahmed, Y.M.; Rheem, C.K.; Koh, K.K.; Adnan, F.A.: Wave energy device and breakwater integration: a review. Renew. Sustain. Energy Rev. 77, 43–58 (2017)

    Article  Google Scholar 

  2. Brito, E.; Melo, A.; Villate, JL.: Annual report 2016. Ocean energy systems. IEA-OES, 2017

  3. Falnes, J.: Ocean Waves and Oscillating Systems: Linear Interactions Including Wave-Energy Extraction. Cambridge University Press, Cambridge (2002)

    Book  Google Scholar 

  4. Falcão, A.F.O.; Henriques, J.C.C.: Oscillating-water-column wave energy converters and air turbines: a review. Renew. Energy 85, 1391–1424 (2016)

    Article  Google Scholar 

  5. Raghunathan, S.: The Wells air turbine for wave energy conversion. Prog. Aerosp. Sci. 31, 335–386 (1995)

    Article  Google Scholar 

  6. Brito-Melo, A.; Gato, L.M.C.; Sarmento, A.J.N.A.: Analysis of Wells turbine design parameters by numerical simulation of the OWC performance. Ocean Eng. 29, 1463–1477 (2002)

    Article  Google Scholar 

  7. Shehata, A.S.; Xiao, Q.; Saqr, K.M.; Alexander, D.: Wells turbine for wave energy conversion: a review. Int. J. Energy Res. 41, 6–38 (2017)

    Article  Google Scholar 

  8. Watterson, J.; Raghunathan, S.: Computed effects of tip clearance on Wells turbine performance. In 35th Aerospace Sciences Meeting and Exhibit AIAA Paper 97-0994, 1997.

  9. Takao, M.; Setoguchi, T.; Kinoue, Y.; Kaneko, K.: Wells turbine with end plates for wave energy conversion. Ocean Eng. 34, 1790–1795 (2007)

    Article  Google Scholar 

  10. Torresi, M.; Camporeale, S.M.; Strippoli, P.D.; Pascazio, G.: Accurate numerical simulation of a high solidity Wells turbine. Renew. Energy 33, 735–747 (2008)

    Article  Google Scholar 

  11. Taha, Z.; Sugiyono, Tuan, Ya.; TMYS.; Sawada, T.: Numerical investigation on the performance of Wells turbine with non-uniform tip clearance for wave energy conversion. Appl. Ocean Res. 33, 321–31 (2011)

  12. Shaaban, S.; Hafiz, A.A.: Effect of duct geometry on Wells turbine performance. Energy Convers. Manag. 61, 51–58 (2012)

    Article  Google Scholar 

  13. Halder, P.; Samad, A.; Kim, J.H.; Choi, Y.S.: High performance ocean energy harvesting turbine design—a new casing treatment scheme. Energy 86, 219–231 (2015)

    Article  Google Scholar 

  14. Cui, Y.; Hyun, B.S.: Numerical study on Wells turbine with penetrating blade tip treatments for wave energy conversion. Int. J. Naval Archit. Ocean Eng. 8, 456–465 (2016)

    Article  Google Scholar 

  15. Booth, T.C.; Dodge, P.R.; Hepworth, H.K.: Rotor-tip leakage: part I — basic methodology. J. Eng. Power 104, 154–161 (1982)

    Article  Google Scholar 

  16. Bindon, J.P.: The measurement and formation of tip clearance loss. J. Turbomach. 111, 257–263 (1989)

    Article  Google Scholar 

  17. Denton, J.D.: Loss mechanisms in turbomachines. In ASME International Gas Turbine and Aeroengine Congress and Exposition, ASME 93-GT-435, 1993.

  18. Inoue, M.; Furukawa, M.: Physics of tip clearance flow in turbomachinery (Keynote paper). In: ASME Joint US-European Fluids Engineering Division Conference, pp. 777–789 (2002)

  19. Key, N.L.; Arts, T.: Comparison of turbine tip leakage flow for flat tip and squealer tip geometries at high-speed conditions. J. Turbomach. 128, 213–220 (2006)

    Article  Google Scholar 

  20. Li, W.; Qiao, W.Y.; Xu, K.F.; Luo, H.L.: Numerical simulation of tip clearance flow passive control in axial turbine. J. Therm. Sci. 17, 147–155 (2008)

    Article  Google Scholar 

  21. Bindon, J.P.: Pressure distributions in the tip clearance region of an unshrouded axial turbine as affecting the problem of tip burnout. In: ASME International Gas Turbine Conference and Exhibition: ASME 87-GT-230 (1987)

  22. Bindon, J.P.; Morphis, G.: The development of axial turbine leakage loss for two profiled tip geometries using linear cascade data. J. Turbomach. 114, 198–203 (1992)

    Article  Google Scholar 

  23. De, M.C.; Lavagnoli, S.; Paniagua, G.: Blade tip shape optimization for enhanced turbine aerothermal performance. In: ASME Turbo Expo Turbine Technical Conference and Exposition: ASME GT2013-94754 (2013)

  24. Morphis, G.; Bindon, J.P. (1988) The effects of relative motion, blade edge radius and gap size on the blade tip pressure distribution in an annular turbine cascade with clearance. In: ASME International Gas Turbine and Aeroengine Congress and Exposition: ASME 88-GT-256

  25. Bindon, J.P.: The microflows within the tip clearance gap of an unshrouded axial turbine and their effects on loss development. Int. J. Turbo Jet Eng. 8, 55–74 (1991)

    Google Scholar 

  26. Morphis, G.; Bindon, J.P.: The performance of a low speed one and a half stage axial turbine with varying rotor tip clearance and tip gap geometry. In: ASME International Gas Turbine and Aeroengine Congress and Exposition: ASME 94-GT-481 (1994)

  27. Kaiser, I.; Bindon, J.P.: The effect of tip clearance on the development of loss behind a rotor and a subsequent nozzle. In: ASME International Gas Turbine and Aeroengine Congress and Exposition: ASME 97-GT-053 (1997)

  28. Ameri, A.A.; Bunker, R.S.: Heat transfer and flow on the first stage blade tip of a power generation gas turbine: part 2-Simulation results. In: ASME International Gas Turbine and Aeroengine Congress and Exposition: ASME 99-GT-283 (1999)

  29. Menter, F.R.: Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 32, 1598–1605 (1994)

    Article  Google Scholar 

  30. CFX, ANSYS.: Solver theory guide. Ansys. Inc., Canonsburg (2011)

  31. Nazeryan, M.; Lakzian, E.: Detailed entropy generation analysis of a Wells turbine using the variation of the blade thickness. Energy 143, 385–405 (2018)

    Article  Google Scholar 

  32. Gratton, T.; Ghisu, T.; Parks, G.; Cambuli, F.; Puddu, P.: Optimization of blade profiles for the Wells turbine. Ocean Eng. 169, 202–214 (2018)

    Article  Google Scholar 

  33. Wilcox, D.C.: Turbulence Modeling for CFD. DCW industries, La Canada (1998)

    Google Scholar 

  34. ANSYS.: CFX-Solver modelling guide–Release 15.0 (2014)

  35. Raghunathan, S.; Setoguchi, T.; Kaneko, K.: The effect of inlet conditions on the performance of Wells turbine. J. Energy Resources Technol. 111(1), 37–42 (1989). https://doi.org/10.1115/1.3231399

    Article  Google Scholar 

  36. Kumar, P.M.; Samad, A.: Effect of turbulence intensity on the performance characteristics of large-scale wells turbine. In: The 4th Asian Wave and Tidal Energy Conference, September (2018)

  37. Celik, I.B.; Ghia, U.; Roache, P.J.; Freitas, C.J.; Coleman, H.; Raad, P.E.: Procedure for estimation and reporting of uncertainty due to discretization in CFD applications. J. Fluids Eng. 130(7), 078001 (2008). https://doi.org/10.1115/1.2960953

    Article  Google Scholar 

  38. Manna, P.; Dharavath, M.; Sinha, P.K.; Chakraborty, D.: Optimization of a flight-worthy scramjet combustor through CFD. Aerosp. Sci. Technol. 27, 138–146 (2013)

    Article  Google Scholar 

  39. Curran, R.; Gato, L.M.C.: The energy conversion performance of several types of Wells turbine designs. Proc. Inst. Mech. Eng. Part A J. Power Energy 211, 133–145 (2005)

    Article  Google Scholar 

  40. Torresi, M.; Camporeale, S.M.; Pascazio, G.: Fluid dynamic analysis low solidity Wells turbine. In: 59 congresso ATI; Genova, Italy, pp. 277–88 (2004)

  41. Dhanasekaran, T.S.; Govardhan, M.: Computational analysis of performance and flow investigation on wells turbine for wave energy conversion. Renew. Energy 30, 2129–2147 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

The high-speed computing facility provided by the Indian Institute of Technology Madras was gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdus Samad.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, P.M., Halder, P. & Samad, A. Radiused Edge Blade Tip for a Wider Operating Range in Wells Turbine. Arab J Sci Eng 46, 2663–2676 (2021). https://doi.org/10.1007/s13369-020-05185-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-05185-z

Keywords

Navigation