Skip to main content
Log in

Impact of Nonlinear Rosseland Approximation on Flow of Newtonian Fluid with Unequal Diffusivities of Chemically Reactive Species

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This investigation studies the flow of a Newtonian fluid close to stagnation point past a stretching/shrinking plate embedded in a porous media. Heat transfer analysis with nonlinear thermal radiation (TR) is also carried out. Homogeneous-heterogeneous reactions with unequal diffusivities of reactants take place in the fluid. The controlling partial differential equations (DEs) of the existing model are reduced to dimensionless ordinary DEs through similarity transformations. These subsequent equations are numerically tackled with the guide of the shooting procedure. The velocity, temperature and concentration’s behaviour has been inspected for specific estimations of the including parameters. The viscous fluid (VF) temperature increases with nonlinear TR. The change in the concentration profile due to the diffusion coefficient rate \( \delta \) is more prominent in the concentration of specie D compared to specie C. Heterogeneous reaction parameter intensity is very helpful in reducing the concentration of bulk fluid \( \phi_{1}(\eta) \) as well as increasing the surface catalyst concentration \( \phi_{2}(\eta) \)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

\( x,y \) :

Spatial coordinates [m]

\( q_{r} \) :

Thermal radiation

\( u,v \) :

Velocity components in \( x \) and \( y \) directions, [ms−1]

\( p \) :

Pressure \( [{\text{kgm}}^{ - 1} {\text{s}}^{ - 2} ] \)

\( \rho \) :

Density \( [{\text{kgm}}^{ - 3} ] \)

\( c,d \) :

Concentrations of species \( C \)and \( D \)

\( \theta \) :

Temperature \( [K] \)

\( k_{i} \left( {i = e,s} \right) \) :

Rate constants

\( \theta_{w} ,\theta_{\infty} \) :

Wall and free stream temperatures \( [K] \)

\( q_{r} \) :

Thermal radiation

\( \varsigma \) :

Permeability of porous zone

\( k \) :

Thermal conductivity \( [{\text{Wm}}^{ - 1} {\text{K}}^{ - 1} ] \)

\( \upsilon \) :

Kinematic viscosity \( [{\text{m}}^{2} {\text{s}}^{ - 1} ] \)

\( C_{p} \) :

Specific heat capacity \( [{\text{Jkg}}^{ - 1} {\text{K}}^{ - 1} ] \)

\( \sigma^{ * } \) :

Stephen Boltzmann constant

\( D_{C}^{*} ,D_{D}^{*} \) :

Diffusion coefficients

\( \psi \) :

Stream function

\( U_{w} ,U_{\infty } \) :

Surface and free stream velocities \( [{\text{ms}}^{ - 1} ] \)

\( \eta \) :

dimensionless variable \( [ - ] \)

\( k^{*} \) :

Wall mean absorption

\( \varTheta_{w} \) :

Temperature ratio \( [ - ] \)

\( K_{s} \) :

Heterogeneous reaction strength

\( \beta \) :

Porosity parameter \( [ - ] \)

\( Sc_{C} ,\,Sc_{D} \) :

Schmidt numbers \( [ - ] \)

\( \lambda \) :

Stretching/shrinking parameter \( [ - ] \)

\( K \) :

Homogenous reaction strength

\( \delta \) :

Ratio of diffusion coefficients \( [ - ] \)

\( Rd \) :

Radiation parameter \( [ - ] \)

\( \varTheta \) :

Dimensionless fluid temperature \( [ - ] \)

\( \Pr \) :

Prandtl number \( [ - ] \)

\( \phi_{1} ,\phi_{2} \) :

Dimensionless concentrations \( [ - ] \)

\( f,f^{\prime} \) :

Dimensionless velocities \( [ - ] \)

References

  1. Crane, L.J.: Flow past a stretching plate. Zeitschrift Für Angewandte Mathematik und Physik ZAMP 21, 645–647 (1970). https://doi.org/10.1007/BF01587695

    Article  Google Scholar 

  2. Parhi, S.; Nath, G.: Stability of viscous flow over a stretching sheet. Acta Technic CSAV Ceskoslovensk Akad Ved 34, 389–409 (1989)

    MATH  Google Scholar 

  3. Kumaran, V.; Kumar, A.V.; Pop, I.: Transition of boundary layer flow past a stretching sheet due to a step change in applied constant mass flux. Acta Mech. 216, 139–145 (2011). https://doi.org/10.1007/s00707-010-0340-7

    Article  MATH  Google Scholar 

  4. Yirga, Y.; Tesfay, D.: Magnetohydrodynamic flow of viscous fluid over a non-linearly stretching sheet. Open Access Libr. J. 01, 1–11 (2014). https://doi.org/10.4236/oalib.1101030

    Article  Google Scholar 

  5. Hassan, H.S.: Symmetry analysis for MHD viscous flow and heat transfer over a stretching sheet. Appl. Math. 06, 78–94 (2015). https://doi.org/10.4236/am.2015.61009

    Article  Google Scholar 

  6. Sheikh, M.; Abbas, Z.: Effects of thermophoresis and heat generation/absorption on MHD flow due to an oscillatory stretching sheet with chemically reactive species. J. Magn. Magn. Mater. 396, 204–213 (2015). https://doi.org/10.1016/j.jmmm.2015.08.011

    Article  Google Scholar 

  7. Singh, J.; Mahabaleshwar, U.S.; Bognár, G.: Mass transpiration in nonlinear MHD flow due to porous stretching sheet. Sci. Rep. 9, 1–15 (2019). https://doi.org/10.1038/s41598-019-52597-5

    Article  Google Scholar 

  8. Polu, B.A.R.; Reddy, S.S.R.: Impact of thermal radiation and viscous dissipation on hydromagnetic unsteady flow over an exponentially inclined preamble stretching sheet. J. Comput. Appl. Res. Mech. Eng. (2019). https://doi.org/10.22061/jcarme.2019.3709.1433

    Article  Google Scholar 

  9. Wang, C.Y.: Stagnation flow towards a shrinking sheet. Int. J. Non-Linear Mech. 43, 377–382 (2008). https://doi.org/10.1016/j.ijnonlinmec.2007.12.021

    Article  Google Scholar 

  10. Lok, Y.Y.; Ishak, A.; Pop, I.: MHD stagnation-point flow towards a shrinking sheet. Int. J. Numer. Methods Heat Fluid Flow 21, 61–72 (2011). https://doi.org/10.1108/09615531111095076

    Article  Google Scholar 

  11. Rosali, H.; Ishak, A.: Stagnation-point flow over a stretching/shrinking sheet in a porous medium. AIP Conf. Proc. 1571, 949–955 (2013). https://doi.org/10.1063/1.4858776

    Article  Google Scholar 

  12. Yasin, M.H.M.; Ishak, A.; Pop, I.: MHD stagnation-point flow and heat transfer with effects of viscous dissipation, joule heating and partial velocity slip. Sci. Rep. 5, 1–8 (2015). https://doi.org/10.1038/srep17848

    Article  Google Scholar 

  13. Nasir, N.A.A.M.; Ishak, A.; Pop, I.; Zainuddin, N.: MHD stagnation point flow towards a quadratically stretching/shrinking surface. J. Phys: Conf. Ser. (2019). https://doi.org/10.1088/1742-6596/1366/1/012013

    Article  Google Scholar 

  14. Alarifi, I.M.; Abokhalil, A.G.; Osman, M.; Lund, L.A.; Ayed, M.B.; Belmabrouk, H.; Iskander, T.: MHD flow and heat transfer over vertical stretching sheet with heat sink or source effect. Sym. Basel (2019). https://doi.org/10.3390/sym11030297

    Article  MATH  Google Scholar 

  15. Magyari, E.; Pantokratoras, A.: Note on the effect of thermal radiation in the linearized Rosseland approximation on the heat transfer characteristics of various boundary layer flows. Int. Commun. Heat Mass Trans. 38, 554–556 (2011). https://doi.org/10.1016/j.icheatmasstransfer.2011.03.006

    Article  Google Scholar 

  16. Pantokratoras, A.: Natural convection along a vertical isothermal plate with linear and non-linear Rosseland thermal radiation. Int. J. Thermal Sci. 84, 151–157 (2014). https://doi.org/10.1016/j.ijthermalsci.2014.05.015

    Article  Google Scholar 

  17. Laxmi, T.V.; Shankar, B.: Effect of nonlinear thermal radiation on boundary layer flow of viscous fluid over nonlinear stretching sheet with injection/suction. J. Appl. Math. Phys. 04, 307–319 (2016). https://doi.org/10.4236/jamp.2016.42038

    Article  Google Scholar 

  18. Waqas, H.; Khan, S.U.; Bhatti, M.M.; Imran, M.: Significance of bioconvection in chemical reactive flow of magnetized Carreau–Yasuda nanofluid with thermal radiation and second-order slip. J. Thermal Anal. Calor. 140(3), 1293–1306 (2020)

    Article  Google Scholar 

  19. Riaz, A.; Ellahi, R.; Bhatti, M.M.; Marin, M.: Study of heat and mass transfer in the Eyring-Powell model of fluid propagating peristaltically through a rectangular compliant channel. Heat Transf. Res. 50(16), 1539–1560 (2019)

    Article  Google Scholar 

  20. Hashim,; Sardar, H.; Khan, M.: Mixed convection flow and heat transfer mechanism for non-Newtonian Carreau nanofluids under the effect of infinite shear rate viscosity. Phys. Scr. 95, 035225 (2020). https://doi.org/10.1088/1402-4896/AB41E9

    Article  Google Scholar 

  21. Pattnaik, P.K.; Mishra, S.; Bhatti, M.M.: Duan-Rach approach to study ethylene glycol C2H6O2 nanofluid flow based upon model. Inventions 5(3), 1–23 (2020)

    Article  Google Scholar 

  22. Zhang, L.; Arain, M.B.; Bhatti, M.M.; Zeeshan, A.; Hal-Sulami, H.: Effects of magnetic Reynolds number on swimming of gyrotactic microorganisms between rotating circular plates filled with nanofluids. Appl. Math. Mech. 41(4), 637–654 (2020)

    Article  Google Scholar 

  23. Chaudhary, M.A.; Merkin, J.H.: A simple isothermal model for homogeneous-heterogeneous reactions in boundary-layer flow. I Equal diffusivities. Fluid Dyn. Res. 16, 311–333 (1995). https://doi.org/10.1016/0169-5983(95)00015-6

    Article  MathSciNet  MATH  Google Scholar 

  24. Chaudhary, M.A.; Merkin, J.H.: stretchingshrinking sheet with uniform suction and slip effects. Fluid Dyn. Res. 16, 335–359 (1995). https://doi.org/10.1016/0169-5983(95)90813-H

    Article  Google Scholar 

  25. Animasaun, I. L.; Raju, C. S. K.; Sandeep, N.; Unequal diffusivities case of homogeneous–heterogeneous reactions within viscoelastic fluid flow in the presence of induced magnetic-field and nonlinear thermal radiation. Alexandria Eng. J. 55, 1595–1606 (2016)

  26. Sheikh, M.; Abbas, Z.: Homogeneous–heterogeneous reactions in stagnation point flow of Casson fluid due to a stretching/shrinking sheet with uniform suction and slip effects. Ain Shams Eng. J. (2017). https://doi.org/10.1016/j.asej.2015.09.010

    Article  Google Scholar 

  27. Alghamdi, M.: On magnetohydrodynamic flow of viscoelastic nanofluids with homo-geneous -heterogeneous reactions. Coatings (2020). https://doi.org/10.3390/coatings10010055

    Article  Google Scholar 

  28. Das, R.: Estimation of Radius Ratio in a Fin Using Inverse CFD Model. CFD Lett. 3(1), 40–47 (2011)

  29. Das, R.: A simplex search method for a conductive–convective fin with variable conductivity. Int. J. Heat Mass Transf. 54, 5001–5009 (2011)

    Article  Google Scholar 

  30. Das, R.: A simulated annealing-based inverse computational fluid dynamics model for unknown parameter estimation in fluid flow problem. Int. J. Comput. Fluid Dyn. 26, 499–513 (2012). https://doi.org/10.1080/10618562.2011.632375

    Article  MathSciNet  Google Scholar 

  31. Das, R.: Inverse analysis of Navier-Stokes equations using simplex search method. Inverse Probl. Sci. Eng. 20(4), 445–462 (2012). https://doi.org/10.1080/17415977.2011.629046

    Article  MathSciNet  MATH  Google Scholar 

  32. Das, R.: Three-Parameter estimation study in a radial fin geometry using FDM based simplex method. Heat Transf. Eng. 35, 1309–1319 (2014). https://doi.org/10.1080/01457632.2013.876866

    Article  Google Scholar 

  33. Das, R.: Estimation of parameters in a fin with temperature-dependent thermal conductivity and radiation. Proc. IMech. E Part E J. Process Mech. Eng. 230(6), 474–485 (2016)

    Article  Google Scholar 

  34. Rashad, A.; El-Hakiem, M.: Effect of radiation on non-darcy free convection from a vertical cylinder embedded in a fluid-saturated porous medium with a temperature-dependent viscosity. J. Porous Media 10(2), 209–218 (2007)

    Article  Google Scholar 

  35. Rashad, A.; EL-Kabeir, S.: Heat and mass transfer in transient flow by mixed convection boundary layer over a stretching sheet embedded in a porous medium with chemically reactive species. J. Porous Media 13, 75–85 (2010)

    Article  Google Scholar 

  36. El-Kabeir, S.; Chamkha, A.; Rashad, A.: Heat and mass transfer by MHD stagnation-point flow of a power-law fluid towards a stretching surface with radiation, chemical reaction and soret and dufour effects. Int. J. Chem. React. Eng. 8, 1–18 (2010)

    Google Scholar 

  37. Rashad, A.; Chamkha, A.; El-Kabeir, S.: Effect of chemical reaction on heat and mass transfer by mixed convection flow about a solid sphere in a saturated porous media. Int. J. Numer. Methods Heat Fluid Flow 21(4), 418–433 (2011)

    Article  Google Scholar 

  38. Rashad, A.; Chamkha, A.; El-Kabeir, S.: Effects of radiation and chemical reaction on heat and mass transfer by natural convection in a micropolar fluid saturated porous medium with streamwise temperature and species concentration variations. Heat Transf. Res. 45(8), 795–815 (2014)

    Article  Google Scholar 

  39. Chamkha, A.; Kabeir, S.M.M.; Rashad, A.: Unsteady coupled heat and mass transfer by mixed convection flow of a micropolar fluid near the stagnation point on a vertical surface in the presence of radiation and chemical reaction. Progress Comput. Fluid Dyn. 15(3), 186–196 (2015)

    Article  MathSciNet  Google Scholar 

  40. El-Kabeir, S.M.M.; Modather, M.; Rashad, A.: Heat and mass transfer by unsteady natural convection over a moving vertical plate embedded in a saturated porous medium with chemical reaction, soret and dufour effects. J. Appl. Fluid Mech. 8(3), 453–463 (2015)

    Article  Google Scholar 

  41. Nabwey, H.A.; Kabeir, S.M.M.; Rashad, A.: Lie group analysis of effects of radiation and chemical reaction on heat and mass transfer by unsteady slip flow from a non-isothermal stretching sheet immersed in a porous medium. J. Comput. Theor. Nanosci. 12(11), 4056–4062 (2015)

    Article  Google Scholar 

  42. Subbarayudu, K.; Suneetha, S.; Bala, A.R.; Rashad, A.M.: Framing the activation energy and binary chemical reaction on cnt’s with cattaneo-christov heat diffusion on maxwell nanofluid in the presence of nonlinear thermal radiation. Arabian J. Sci. Eng. 44, 10313–10325 (2019)

    Article  Google Scholar 

  43. Reddy, S.R.R.; Bala, A.R.P.; Rashad, A.M.: Activation energy impact on chemically reacting eyring-powell nanofluid flow over a stretching cylinder. Arab. J. Sci. Eng. 45(7), 5227–5242 (2020)

    Article  Google Scholar 

  44. Souayeh, B.; Reddy, M.G.; Sreenivasulu, P.; Poornima, T.; Rahimi-Gorji, M.; Alari, I.M.: Comparative analysis on non-linear radiative heat transfer on MHD Casson nano fluid past a thin needle. J. Mol. Liquids 284, 163–174 (2019). https://doi.org/10.1016/j.molliq.2019.03.151

    Article  Google Scholar 

  45. Shaw, S.; Kameswaran, P. K.; Precious Sibanda, P.: Homogeneous-heterogeneous reactions in micropolar fluid flow from a permeable stretching or shrinking sheet in a porous medium. Boundary Value Probl. 2013(77), (2013)

Download references

Acknowledgements

We are thankful to the reviewers for their encouraging comments and constructive suggestions to improve the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Hasnain.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheikh, M., Abbas, Z., Hasnain, J. et al. Impact of Nonlinear Rosseland Approximation on Flow of Newtonian Fluid with Unequal Diffusivities of Chemically Reactive Species. Arab J Sci Eng 46, 2711–2719 (2021). https://doi.org/10.1007/s13369-020-05216-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-05216-9

Keywords

Navigation