Skip to main content
Log in

A Review of Drag-Reducing Agents (DRAs) in Petroleum Industry

  • Review Article-Petroleum Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Increasing the flow capacity and pumping rates is challenging in petroleum production systems due to drag or frictional losses. Drag-reducing agents (DRAs) are usually added to the fluid to reduce the drag and improve the flowing capacity or pumping rates of the fluid required for achieving the targeted flow rate or enhancing transportation efficiency.

The wide variation in the oilfield systems demands distinguish features of DRA to meet the specific requirements of the DRA relevant to the oilfield applications. The selection of DRA suitable for the oilfield systems influences the type and formulation of DRA. Oil and gas transportation in the pipeline requires oil-soluble DRA; on the other hand, injection of water requires water-soluble DRA. The requirement of an oilfield system dictates the basic characteristics of the DRA, such as polymer DRA, can be used for transportation of oil and gas; however, the surfactant is preferable for other systems such as drilling and fracturing applications. Also, the recent development in nanotechnology has opened a pathway for the development of DRA for wide application in oilfield systems.

This study presents a review of the published work on the DRA applications in the petroleum industry. The methodology and research approaches of drag reduction relevant to oilfield systems are described and analyzed. The experimental work and case studies are also discussed while identifying the research gaps and the recommendations for research approaches and potential areas that need further investigation are highlighted in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

DR%:

Drag reduction percentage

DRA:

Drag-reducing agents

DRP’s:

Drag-reducing polymers

HMW:

High molecular weight

PEO:

Polyethylene oxide

D:

Pipe diameter.

ID:

Inner diameter

OD:

Outer diameter

Re:

Reynolds number (dimensionless number)

W/O:

Water-in-oil emulsion

O/W:

Oil-in-water emulsion

PAM:

Polyacrylamide

ppm:

Part per million

PIB:

Polyisobutylene

CTAC:

Cetyltrimethylammonium chloride

NaSal:

Sodium salicylate

TVP:

Thermoviscosifying polymer

HPAM:

Hydrolyzed polyacrylamide

\({\Delta P}_{\mathrm{without DRP}}\) :

Pressure drop in the absence of DRP

\({\Delta P}_{\mathrm{with DRP}}\) :

Pressure drop in the presence of DRP

OC:

Organoclay

IOIP:

Initial oil in place

References

  1. Abdulbari, H.A.; Nour, S.N.K.A.H.: Grafted natural polymer as new drag reducing agent: an experimental approach. Chem. Ind. Chem. Eng. Q. 18, 361–371 (2012). https://doi.org/10.2298/CICEQ111206012A

    Article  Google Scholar 

  2. Abdulbari, H.A.; Shabirin, A.; Abdurrahman, H.N.: Bio-polymers for improving liquid flow in pipelines—A review and future work opportunities. J. Ind. Eng. Chem. 20, 1157–1170 (2014). https://doi.org/10.1016/J.JIEC.2013.07.050

    Article  Google Scholar 

  3. Abdulbari, H.A.; Yunus, R.M.; Abdurahman, N.H.; Charles, A.: Going against the flow-A review of non-additive means of drag reduction. J. Ind. Eng. Chem. 19, 27–36 (2013). https://doi.org/10.1016/j.jiec.2012.07.023

    Article  Google Scholar 

  4. Abubakar, A.; Al-Hashmi, A.R.; Al-Wahaibi, T.; Al-Wahaibi, Y.; Al-Ajmi, A.; Eshrati, M.: Parameters of drag reducing polymers and drag reduction performance in single-phase water flow. Adv. Mech. Eng. 6, 202073 (2014). https://doi.org/10.1155/2014/202073

    Article  Google Scholar 

  5. Abubakar, A.; Al-Wahaibi, T.; Al-Wahaibi, Y.; Al-Hashmi, A.R.; Al-Ajmi, A.: Roles of drag reducing polymers in single and multi-phase flows. Chem. Eng. Res. Des. 92, 2153–2181 (2014). https://doi.org/10.1016/j.cherd.2014.02.031

    Article  Google Scholar 

  6. Adesina, F.; Temitope, O.; Victoria, A.; Adebowale, O.; Babajide, L.: Evaluation of the effects of nanofluid on the Lubricity of oil-based mud. Curr. J. Appl. Sci. Technol. 28(6), 1–9 (2018). https://doi.org/10.9734/CJAST/2018/35139

    Article  Google Scholar 

  7. Al-Muntasheri, G.A., 2014. A critical review of hydraulic fracturing fluids over the last decade. in: Soc. Pet. Eng. - SPE West. North Am. Rocky Mt. Jt. Meet. pp. 16–18

  8. Al-Sarkhi, A.: Drag reduction with polymers in gas-liquid/liquid-liquid flows in pipes: a literature review. J. Nat. Gas Sci. Eng. 2, 41–48 (2010). https://doi.org/10.1016/J.JNGSE.2010.01.001

    Article  Google Scholar 

  9. Al-Sarkhi, A.: Effect of mixing on frictional loss reduction by drag reducing polymer in annular horizontal twophase flows. Int. J. Multiph. Flow 39, 186–192 (2012)

  10. Al-Sarkhi, A.: Effects of drag-reducing polymers on stratified and slug gas-liquid flows in a horizontal pipe. Arab. J. Sci. Eng. 38, 699–704 (2013). https://doi.org/10.1007/s13369-012-0520-y

    Article  Google Scholar 

  11. Al-Sarkhi, A.; Hanratty, T.J.: Effect of drag-reducing polymers on annular gas–liquid flow in a horizontal pipe. Int. J. Multiph. Flow 27, 1151–1162 (2001). https://doi.org/10.1016/S0301-9322(00)00071-9

    Article  MATH  Google Scholar 

  12. Al-Sarkhi, A.; Hanratty, T.J.: Effect of pipe diameter on the performance of drag-reducing polymers in annular gas-liquid flows. Chem. Eng. Res. Des. 79, 402–408 (2001). https://doi.org/10.1205/026387601750282328

    Article  MATH  Google Scholar 

  13. Al-Wahaibi, T.; Al-Wahaibi, Y.; Al-Ajmi, A.; Yusuf, N.; Al-Hashmi, A.R.; Olawale, A.S.; Mohammed, I.A.: Experimental investigation on the performance of drag reducing polymers through two pipe diameters in horizontal oil-water flows. Exp. Therm. Fluid Sci. 50, 139–146 (2013). https://doi.org/10.1016/j.expthermflusci.2013.05.014

    Article  Google Scholar 

  14. Al-Yaari, M.; Al-Sarkhi, A.; Abu-Sharkh, B.: Effect of drag reducing polymers on water holdup in an oil–water horizontal flow. Int. J. Multiph. Flow 44, 29–33 (2012). https://doi.org/10.1016/J.IJMULTIPHASEFLOW.2012.04.001

    Article  Google Scholar 

  15. Al-Yaari, M.; Al-Sarkhi, A.; Hussein, I.A.; Abu Sharkh, B.: Effect of drag reducing polymers on surfactant-stabilized water-oil emulsions flow. Exp. Therm. Fluid Sci. 51, 319–331 (2013). https://doi.org/10.1016/j.expthermflusci.2013.08.015

    Article  Google Scholar 

  16. Al-Yaari, M.; Hussein, I.A.; Al-Sarkhi, A.: Pressure drop reduction of stable water-in-oil emulsions using organoclays. Appl. Clay Sci. 95, 303–309 (2014). https://doi.org/10.1016/j.clay.2014.04.029

    Article  Google Scholar 

  17. Al-Yaari, M.; Soleimani, A.; Abu-Sharkh, B.; Al-Mubaiyedh, U.; Al-sarkhi, A.: Effect of drag reducing polymers on oil–water flow in a horizontal pipe. Int. J. Multiph. Flow 35, 516–524 (2009). https://doi.org/10.1016/J.IJMULTIPHASEFLOW.2009.02.017

    Article  Google Scholar 

  18. Alsurakji, I.; Al-Sarkhi, A.; Atiqullah, M.; Alhems, L.; El Nakla, M.: Study of oil-soluble and water-soluble drag reducing polymers in multiphase flows. Can. J. Chem. Eng. 96, 1012–1028 (2018). https://doi.org/10.1002/cjce.23049

    Article  Google Scholar 

  19. Alsurakji, I.H.; Al-Sarkhi, A.; Habib, M.; Badr, H.M.: An experimental study on the performance of drag-reducing polymers in single- and multiphase horizontal flow using particle image velocimetry. J. Energy Resour. Technol. Trans. ASME (2018). https://doi.org/10.1115/1.4038847

    Article  Google Scholar 

  20. Alwasitti, A.A. ; Al-Zubaidi, N.S.; Salam, M. ; 2019.: Enhancing lubricity of drilling fluid using nanomaterial additives. Pet. Coal, 61(3)

  21. An, M.; Huang, H.; Zhang, F.; Elsworth, D.: Effect of slick-water fracturing fluid on the frictional properties of shale reservoir rock gouges. Geomech. Geophys. Geo-Energy Geo-Resources 6, 1–16 (2020). https://doi.org/10.1007/s40948-020-00153-1

    Article  Google Scholar 

  22. Asidin, M.A.; Suali, E.; Jusnukin, T.; Lahin, F.A.: Review on the applications and developments of drag reducing polymer in turbulent pipe flow. Chinese J. Chem. Eng. 27, 1921–1932 (2019). https://doi.org/10.1016/j.cjche.2019.03.003

    Article  Google Scholar 

  23. Atiqullah, M.; Al-Sarkhi, A.H.; Al-Thenayan, F.M.; Al-Malki, A.R.; Alasiri, H.S.: Energy-saving UHMW polymeric flow aids: catalyst and polymerization process development. Catalysts (2019). https://doi.org/10.3390/catal9121002

    Article  Google Scholar 

  24. Ayegba, P.O.; Edomwonyi-Otu, L.C.; Yusuf, N.; Abubakar, A.: A review of drag reduction by additives in curved pipes for single-phase liquid and two-phase flows. Eng. Rep. 3, e12294 (2021). https://doi.org/10.1002/ENG2.12294

    Article  Google Scholar 

  25. Ayegba, P.O.; Edomwonyi-Otu, L.C.; Yusuf, N.; Abubakar, A.: Experimental and neural network modelling of polymer drag reduction in 180° bends. Results Mater. 1, 100012 (2019). https://doi.org/10.1016/j.rinma.2019.100012

    Article  Google Scholar 

  26. Benzi, R.: A short review on drag reduction by polymers in wall bounded turbulence. Phys. D Nonlinear Phenom. 239, 1338–1345 (2010). https://doi.org/10.1016/J.PHYSD.2009.07.013

    Article  MATH  Google Scholar 

  27. Berman, N.S.: Drag reduction by polymers. Annu. Rev. Fluid Mech. 10, 47–64 (1978)

  28. Brautlecht, C.A.; Sethi, J.R.: Flow of paper pulps in pipe lines. Ind. Eng. Chem. 25, 283–288 (1933). https://doi.org/10.1021/ie50279a009

    Article  Google Scholar 

  29. Brecht, W.; 1935.: Der rohrreibungsverlust von stoffaufschwemmungen

  30. Broniarz-Press, L.; Rozanski, J.; Rozanska, S.: Drag reduction effect in pipe systems and liquid falling film flow. Rev. Chem. Eng. 23, 149–245 (2007). https://doi.org/10.1515/REVCE.2007.23.3-4.149/MACHINEREADABLECITATION/RIS

    Article  Google Scholar 

  31. Brostow, W.: Drag reduction in flow: review of applications, mechanism and prediction. J. Ind. Eng. Chem. 14, 409–416 (2008). https://doi.org/10.1016/J.JIEC.2008.07.001

    Article  Google Scholar 

  32. Burger, E.; Oil, A.; Munk, W.R.; Wahl, H.: Flow increase in the trans Alaska pipeline through use of a polymeric drag-reducing additive. J. Pet. Technol. 34(02), 37 (1982)

    Article  Google Scholar 

  33. Chen, H.; Liu, H.; Zhang, S.; Feng, Y.: Smart thermoviscosifying polymer for improving drag reduction in slick-water hydrofracking. Fuel 278, 118408 (2020). https://doi.org/10.1016/j.fuel.2020.118408

    Article  Google Scholar 

  34. De Gennes, P.G.: Towards a scaling theory of drag reduction. Phys. A Stat. Mech. its Appl. 140, 9–25 (1986). https://doi.org/10.1016/0378-4371(86)90200-1

    Article  Google Scholar 

  35. Dever, C.D. ; Tulsa, O. ; Har, R.J. ; Seifert, W.F. ; 1962.: Method of decreasing friction loss in flowing fluids

  36. Dewan, A.; Mahanta, P.; Raju, K.S.; Suresh Kumar, P.: Review of passive heat transfer augmentation techniques. Proc. Inst. Mech. Eng. Part A J. Power Energy 218, 509–527 (2004). https://doi.org/10.1243/0957650042456953

    Article  Google Scholar 

  37. Edomwonyi-Otu, L.C.; Dosumu, A.I.; Yusuf, N.: Effect of oil on the performance of biopolymers as drag reducers in fresh water flow. Heliyon 7, e06535 (2021). https://doi.org/10.1016/J.HELIYON.2021.E06535

    Article  Google Scholar 

  38. Ercan, C. ; Ozbayoglu, M.E. ; 2009.: “PHPA” as a frictional pressure loss reducer and its pressure loss estimation, in: SPE/IADC Middle East Drill. Technol. Conf. Exhib. held Manama, Bahrain, 2, 645–650. https://doi.org/10.2118/125992-ms

  39. Eshrati, M.; Al-Hashmi, A.R.; Al-Wahaibi, T.; Al-Wahaibi, Y.; Al-Ajmi, A.; Abubakar, A.: Drag reduction using High molecular weight polyacrylamides during multiphase flow of oil and water: a parametric study. J. Pet. Sci. Eng. (2015). https://doi.org/10.1016/j.petrol.2015.09.028

    Article  Google Scholar 

  40. Fichter, J. ; Bui, A. ; Grawunder, G. ; Jones, T. ; & Hughes, B. ; 2010.: Critical considerations for successful hydraulic fracturing and shale gas recovery, in: 2010 AADE Fluids Conf. Exhib. Houston, Texas AADE–10–DF–HO–08, Hilt. Houst. North

  41. Fink, J.: Hydraulic fracturing chemicals and fluids technology. Publ, Gulf Prof (2020)

    Google Scholar 

  42. Forrest, F.; Grierson, G.A.: Friction losses in cast iron pipe carrying paper stock. Pap. Trade J. 92(22), 39 (1931)

    Google Scholar 

  43. Fsadni, A.M.; Whitty, J.P.M.; Stables, M.A.: A brief review on frictional pressure drop reduction studies for laminar and turbulent flow in helically coiled tubes. Appl. Therm. Eng. 109, 334–343 (2016). https://doi.org/10.1016/J.APPLTHERMALENG.2016.08.068

    Article  Google Scholar 

  44. Ghanadi, F. ; Arjomandi, M. ; Cazzolato, B. ; Ghanadi, F. ; Arjomandi, M. ; Zander, A.C. ; Cazzolato, B.S. ; 2012.: A review of skin friction drag reduction within the turbulent boundary layer ASTRI Heliostats Project View project Ocean wave power View project A review of skin friction drag reduction within the turbulent boundary layer. in: Australas. Congr. Appl. Mech. ACAM 7, 9

  45. Graham, M.D.: Drag reduction in turbulent flow of polymer solutions. Rheol. Rev. 2, 143–170 (2004)

  46. Greskovich, E.J.; Shrier, A.L.: Pressure drop and holdup in horizontal slug flow. AIChE J. 17, 1214–1219 (1971). https://doi.org/10.1002/AIC.690170529

    Article  Google Scholar 

  47. Gu, Y.; Yu, S.; Mou, J.; Wu, D.; Zheng, S.: Research progress on the collaborative drag reduction effect of polymers and surfactants. Materials 13, 1–12 (2020). https://doi.org/10.3390/ma13020444 (Basel)

    Article  Google Scholar 

  48. Guo, Y.; Zhang, Z.; Zhang, S.: Advances in the application of biomimetic surface engineering in the oil and gas industry. Friction 7, 289–306 (2019). https://doi.org/10.1007/s40544-019-0292-4

    Article  Google Scholar 

  49. Han, W.J.; Choi, H.J.: Role of bio-based polymers on improving turbulent flow characteristics: materials and application. Polymers (2017). https://doi.org/10.3390/polym9060209 (Basel)

    Article  Google Scholar 

  50. Han, W.J.; Dong, Y.Z.; Choi, H.J.: Applications of water-soluble polymers in turbulent drag reduction. Processes (2017). https://doi.org/10.3390/pr5020024

    Article  Google Scholar 

  51. Hartnett, J.P.; Kwack, E.Y.: Prediction of friction and heat transfer for viscoelastic fluids in turbulent pipe flow. Int. J. Thermophys. 7(1), 53–63 (1986)

    Article  Google Scholar 

  52. Holtsclaw, J.; Funkhouser, G.P.: A Crosslinkable synthetic-polymer system for high-temperature hydraulic-fracturing applications. SPE Drill. Complet. 25, 555–563 (2010). https://doi.org/10.2118/125250-PA

    Article  Google Scholar 

  53. Hoyt, J.W.: The effect of additives on fluid friction. Trans. ASME J. Basic Eng. 94, 258–285 (1972)

  54. Hoyt, J.W.: Drag reduction. Wiley-Interscience. Encycl. Polym. Sci. Eng. 5, 129–151 (1986)

    Google Scholar 

  55. Huang, T. ; Crews, J.B. ; 2007.: Fluid-Loss Control Improves Performance of Viscoelastic Surfactant Fluids, in: SPE International Symposium on Oilfield Chemistry Held in Houston, Texas, U.S.A. pp. 2–8. https://doi.org/10.2118/106227-ms

  56. Ibrahim, A.F. ; Nasr-El-Din, H.A. ; Rabie, A. ; Lin, G. ; Zhou, J. ; Qu, Q. ; 2016.: A new friction-reducing agent for slickwater fracturing treatments, in: Society of Petroleum Engineers - SPE Low Perm Symposium. pp. 1–16. https://doi.org/10.2118/180245-ms

  57. Ibrahim, A.F.; Nasr-el-din, H.A.; Texas, A.; Rabie, A.; Lin, G.; Zhou, J.; Qu, Q.: A new friction-reducing agent for slickwater-fracturing treatments. SPE Prod. Oper. 33(3), 583–595 (2018)

    Google Scholar 

  58. Ibrahim, R.; Odah, M.; Shafeeq, D.: An Overview on most effective DRAs in crude oil pipelines. Eng. Technol. J. 37, 391–397 (2019). https://doi.org/10.30684/etj.37.10a.2

    Article  Google Scholar 

  59. Ivchenko, P.V.; Nifant’ev, I.E.; Tavtorkin, A.V.: Polyolefin drag reducing agents (Review). Pet. Chem. 56, 775–787 (2016). https://doi.org/10.1134/S096554411609005X

    Article  Google Scholar 

  60. Jahns, C. ; 2014.: Friction reduction by using nano-fluids in drilling. Master’s thesis, Inst. Pet. og Anv. Geofys

  61. Joseph, A.; Ajienka, J.A.: Use of drag reducer in improving water (flooding) injectivity in ukpokiti field, niger delta. Leonardo Electron. J. Pract. Technol. 9, 177–188 (2010)

    Google Scholar 

  62. Joseph, D.D.; Narain, A.; Riccius, O.: Shear-wave speeds and elastic moduli for different liquids. Part 1 Theory. J. Fluid Mech. 171, 289–308 (1986). https://doi.org/10.1017/S0022112086001453

    Article  MATH  Google Scholar 

  63. Jubran, B.A.; Zurigat, Y.H.; Goosen, M.F.A.: Drag reducing agents in multiphase flow pipelines: Recent trends and future needs. Pet. Sci. Technol. 23, 1403–1424 (2005). https://doi.org/10.1081/LFT-200038223

    Article  Google Scholar 

  64. Khadom, A.A.; Abdul-Hadi, A.A.: Performance of polyacrylamide as drag reduction polymer of crude petroleum flow. Ain Shams Eng. J. 5, 861–865 (2014). https://doi.org/10.1016/j.asej.2014.04.005

    Article  Google Scholar 

  65. Khalid, M.; Sultan, A.; Noui-Mehidi, M.N.; Al-Sarkhi, A.; Salim, O.: Effect of nano-clay cloisite 20A on water-in-oil stable emulsion flow at different temperatures. J. Pet. Sci. Eng. 184, 106595 (2020). https://doi.org/10.1016/j.petrol.2019.106595

    Article  Google Scholar 

  66. Kim, O. K. ; & Choi, L.S. ; 1996.: Drag-reducing polymers. Polym. Mater. Encycl. (JC Solomone eds), CRC Publ

  67. Kim, J.T.; Kim, C.A.; Zhang, K.; Jang, C.H.; Choi, H.J.: Effect of polymer-surfactant interaction on its turbulent drag reduction. Coll. Surf. A Physicochem. Eng. Asp. 391, 125–129 (2011). https://doi.org/10.1016/j.colsurfa.2011.04.018

    Article  Google Scholar 

  68. Kostic, M.: On turbulent drag and heat transfer reduction phenomena and laminar heat transfer enhancement in non-circular duct flow of fluids. Int. J. heat mass Transf. 37, 133–147 (1994)

    Article  Google Scholar 

  69. Laurain, A.: Analysis of fracturing fluid system, effect of rock mechanical properties on fluid selection. AGH Drill. Oil Gas (2014). https://doi.org/10.7494/DRILL.2014.31.L167

    Article  Google Scholar 

  70. Le Brun, N.; Zadrazil, I.; Norman, L.; Bismarck, A.; Markides, C.N.: On the drag reduction effect and shear stability of improved acrylamide copolymers for enhanced hydraulic fracturing. Chem. Eng. Sci. 146, 135–143 (2016). https://doi.org/10.1016/J.CES.2016.02.009

    Article  Google Scholar 

  71. Lindsay, S.D. ; Mcneil, F. ; Sackash, M.J. ; Bryant, J.E. ; 2011.: Use of salt-tolerant friction reducer for coiled-tubing applications in unconventional shale formations, in: SPE/ICoTA Coiled Tubing & Well Intervention Conference and Exhibition. OnePetro.‏‏ pp. 5–6

  72. Liu, D.; Wang, Q.; Wei, J.: Experimental study on drag reduction performance of mixed polymer and surfactant solutions. Chem. Eng. Res. Des. 132, 460–469 (2018). https://doi.org/10.1016/j.cherd.2018.01.047

    Article  Google Scholar 

  73. Liu, S.Q.; Chen, Z.R.; Meng, Q.N.; Zhou, H.L.; Li, C.; Liu, B.C.: Effect of graphene and graphene oxide addition on lubricating and friction properties of drilling fluids. Nanosci. Nanotechnol. Lett. 9, 446–452 (2017). https://doi.org/10.1166/NNL.2017.2334

    Article  Google Scholar 

  74. Liu, Z.Y.; Zhou, F.J.; Qu, H.Y.; Yang, Z.; Zou, Y.S.; Wang, D.B.: Impact of the microstructure of polymer drag reducer on slick-water fracturing. Geofluids (2017). https://doi.org/10.1155/2017/9080325

    Article  Google Scholar 

  75. Luca Gandossi, U.V.E.: An overview of hydraulic fracturing and other formation stimulation technologies for shale gas production. JRC Technical Reports (2013). https://doi.org/10.2790/99937

    Article  Google Scholar 

  76. Lumley, J.L.: Drag reduction by additives. Annu. Rev. Fluid Mech. 1, 367–384 (1969). https://doi.org/10.1146/ANNUREV.FL.01.010169.002055

    Article  Google Scholar 

  77. Manfield, P.D.; Lawrence, C.J.; Hewitt, G.F.: Drag reduction with additives in ultiphase flow: a literature survey. Multiph. Sci. Technol. 11, 197–221 (1999). https://doi.org/10.1615/MULTSCIENTECHN.V11.I3.20

    Article  Google Scholar 

  78. Metzner, A.B.; Park, M.G.: Turbulent flow characteristics of viscoelastic fluids. J. Fluid Mech. 20, 291–303 (1964). https://doi.org/10.1017/S0022112064001215

    Article  Google Scholar 

  79. Motiee, M. ; Johnson, M. ; Ward, B. ; Gradl, C. ; McKimmy, M. ; Meeheib, J. ; 2016.: High concentration polyacrylamide-based friction reducer used as a direct substitute for guar-based borate crosslinked fluid in fracturing operations, in: Soc. Pet. Eng. - SPE Hydraul. Fract. Technol. Conf. HFTC 2016. https://doi.org/10.2118/179154-ms

  80. Motier, J.F.., Chou, L.C. ; Kommareddi, N. ; 1996.: Commercial drag reduction past, present and future‏. ASME Fluids Eng. Div. Summer Meet. Part 2(of 3), San Diego, CA, USA, 07/07-11/96 (pp. 229–234)

  81. Mucharam, L.; Rahmawati, S.; Ramadhani, R.: Drag reducer selection for oil pipeline based laboratory experiment. Mod. Appl. Sci. 12, 112 (2017). https://doi.org/10.5539/mas.v12n1p112

    Article  Google Scholar 

  82. Nadolink, R.H.; Haigh,W.W.: Bibliography on skin friction reduction with polymers and other boundary-layer additives. Appl. Mech. Rev. 48, 351–460 (1995)

  83. Naffa’a, A.M.Y.: An investigation into how to optimize the effect of drag reducing agents on the flowrate & pressure of single phase fluid pipelines. PSIG Annu. Meet. PSIG 2019, 1–29 (2019)

    Google Scholar 

  84. Nesyn, G.V.; Sunagatullin, R.Z.; Shibaev, V.P.; Malkin, A.Y.: Drag reduction in transportation of hydrocarbon liquids: from fundamentals to engineering applications. J. Pet. Sci. Eng. 161, 715–725 (2018). https://doi.org/10.1016/J.PETROL.2017.10.092

    Article  Google Scholar 

  85. Newman, K. ; Kelleher, P. ; Smalley, E. ; 2007.: Friction reduction for microhole CT drilling. Ctes LP pp. 1–35

  86. Nijs, L.: New generation drag reducer. Pipeline Technol. 2, 143–149 (1995)

    Google Scholar 

  87. Oliver, D.R.; Young Hoon, A.: Two-phase non-Newtonian flow. Trans. Inst. Chem. Eng 46, T106 (1968)

    Google Scholar 

  88. Otten, L.; Fayed, A.S.: Pressure drop and drag reduction in two-phase non-newtonian slug flow. Can. J. Chem. Eng. 54, 111–114 (1976). https://doi.org/10.1002/CJCE.5450540117

    Article  Google Scholar 

  89. Ousterhout, R.S.; Hall, C.D.: Reduction of friction loss in fracturing operations. J. Pet. Technol. 13(03), 217–222 (1961)

    Article  Google Scholar 

  90. Patterson, G.K.; Zakin, J.L.; Rodriguez, J.M.: Drag reduction: Polymer solutions, soap solutions, and solid particle suspensions in pipe flow. Ind. Eng. Chem. 61, 22–30 (1969)

  91. Pei, H.H. ; Zhang, G.C. ; Ge, J.J. ; Zhang, J. ; Zhang, Q. ; Fu, L.P. ; 2015.: Investigation of nanoparticle and surfactant stabilized emulsion to enhance oil recovery in waterflooded heavy oil reservoirs, in: Soc. Pet. Eng. - SPE Canada Heavy Oil Tech. Conf. 2015, CHOC 2015, pp. 666–676. https://doi.org/10.2118/174488-ms

  92. Perlin, M.; Dowling, D.R.; Ceccio, S.L.: Freeman scholar review: passive and active skin-friction drag reduction in turbulent boundary layers. J. Fluids Eng. Trans. ASME (2016). https://doi.org/10.1115/1.4033295/444561

    Article  Google Scholar 

  93. Prasetyo, I. ; 2003.: Drag reducer increases pipeline capacity to accommodate the successful of field development. Soc. Pet. Eng. - SPE Asia Pacific Oil Gas Conf. Exhib. 2003, APOGCE 2003

  94. Rafati, R.; Smith, S.R.; Sharifi Haddad, A.; Novara, R.; Hamidi, H.: Effect of nanoparticles on the modifications of drilling fluids properties: a review of recent advances. J. Pet. Sci. Eng. 161, 61–76 (2018). https://doi.org/10.1016/J.PETROL.2017.11.067

    Article  Google Scholar 

  95. Ricco, P.; Skote, M.; Leschziner, M.A.: A review of turbulent skin-friction drag reduction by near-wall transverse forcing. Prog. Aerosp. Sci. 123, 100713 (2021). https://doi.org/10.1016/J.PAEROSCI.2021.100713

    Article  Google Scholar 

  96. Rosehart, R.G.; Scott, D.S.; Rhodes, E.: Gas-liqud slug flow with drag-reducing polymer solutions. AIChE J. 18, 744–750 (1972). https://doi.org/10.1002/AIC.690180414

    Article  Google Scholar 

  97. Saether, G. ; Kubberud, K. ; Nuland, S. ; & Lingelem, M.N. ; 1989.: Drag reduction in two phase flow, in: Proc. Fourth Int. Conf. Multiph. Flow, Fr. (pp. 171–184)

  98. Sanders, M. ; Felling, K.; Thomson, S.; Energy, S.; Wright, S.; Thorpe, R.; Oil, S.; 2016.: Dry polyacrylamide friction reducer: not just for slick water, in: SPE Hydraul. Fract. Technol. Conf. OnePetro pp. 9–11

  99. Saravi, S. S.; Cheng, K.; 2013.: A review of drag reduction by riblets and micro-textures in the turbulent boundary layers. ‏. Eur. Sci. Journal, 9(33)

  100. Shenoy, A.V.: A review on drag reduction with special reference to micellar systems. Colloid Polym. Sci. 262, 319–337 (1984)

  101. Singh, G.; Ch, S.; Engineering, C.; Pradesh, A.; Engineering, C.; Pradesh, A.: Drag reduction by different solutions of polymers in gravity driven flow. Int. J. Appl. Eng. Res. Dindigual 1, 899–907 (2011)

    Google Scholar 

  102. Soares, E.J.: Review of mechanical degradation and de-aggregation of drag reducing polymers in turbulent flows. J. Nonnewton. Fluid Mech. 276, 104225 (2020). https://doi.org/10.1016/J.JNNFM.2019.104225

    Article  Google Scholar 

  103. Sokhal, K.S.; Dasaroju, G.; Bulasara, V.K.: Formation, stability and comparison of water/oil emulsion using gum arabic and guar gum and effect of aging of polymers on drag reduction percentage in water/oil flow. Vacuum 159, 247–253 (2019). https://doi.org/10.1016/j.vacuum.2018.10.044

    Article  Google Scholar 

  104. Sönmez, A.; Verşan Kök, M.; Özel, R.: Performance analysis of drilling fluid liquid lubricants. J. Pet. Sci. Eng. 108, 64–73 (2013). https://doi.org/10.1016/J.PETROL.2013.06.002

    Article  Google Scholar 

  105. Souas, F.; Safri, A.; Benmounah, A.: A review on the rheology of heavy crude oil for pipeline transportation. Pet. Res. 6, 116–136 (2021). https://doi.org/10.1016/j.ptlrs.2020.11.001

    Article  Google Scholar 

  106. Sylvester, N.D.; Brill, J.P.: Drag reduction in two-phase annular-mist flow of air and water. AIChE J 22, 615–617 (1976). https://doi.org/10.1002/AIC.690220335 (United States)

    Article  Google Scholar 

  107. Thwaites, G.R.; Kulov, N.N.; Nedderman, R.M.: Liquid film properties in two-phase annular flow. Chem. Eng. Sci. 31, 481–486 (1976). https://doi.org/10.1016/0009-2509(76)80033-4

    Article  Google Scholar 

  108. Tiong, A.N.T.; Kumar, P.; Saptoro, A.: Reviews on drag reducing polymers. Korean J. Chem. Eng 32, 1455–1476 (2015). https://doi.org/10.1007/s11814-015-0104-0

    Article  Google Scholar 

  109. Tiwari, A.; Fartiyal, P.; Sharma, N.M.; Manickavasagam, C.; Toshniwal, V.; Dwivedi, P.; Mathur, A.; 2016.: Application of drag reducing agent in pipeline handling high water cut fluid - Case study from a mature field in mumbai offshore region. Soc. Pet. Eng. - Abu Dhabi Int. Pet. Exhib. Conf. 2016 2016-Janua. https://doi.org/10.2118/183084-ms

  110. Tomas, B.: 1948. Some observations on the flow of linear polymer solutions through straight tubes at large Reynolds numbers‏. ci.nii.ac.jp‏.

  111. den Toonder, J.: Drag reduction by polymer additives in a turbulent pipe flow: Laboratory and numerical experiments. J. Fluid Mech. 337, 193–231 (1997)

    Article  Google Scholar 

  112. Utomo, A.; Riadi, A.; Gunawan, Y.: Drag reduction using additives in smooth circular pipes based on experimental approach. Processes (2021). https://doi.org/10.3390/pr9091596

    Article  Google Scholar 

  113. Van Domelen, M.; Cutrer, W.; Collins, S.; Ruegamer, M.; 2017.: Applications of viscosity-building friction reducers as fracturing fluids. Soc. Pet. Eng. - SPE Oklahoma City Oil Gas Symp. 2017 12–24. https://doi.org/10.2118/185084-ms

  114. Virk, P.S.: Drag reduction fundamentals. AICHE J. 21, 625–656 (1975)

  115. Wang, Y.; Yu, B.; Zakin, J.L.; Shi, H.: Review on drag reduction and its heat transfer by additives. Adv. Mech. Eng. 3, 17 (2011). https://doi.org/10.1155/2011/478749

    Article  Google Scholar 

  116. Warholic, M.D.; Massah, H.; Hanratty, T.J.: Influence of drag-reducing polymers on turbulence: effects of Reynolds number, concentration and mixing. Exp. Fluids 27, 461–472 (1999). https://doi.org/10.1007/s003480050371

    Article  Google Scholar 

  117. Warholic, M.D.; Schmidt, G.M.; Hanratty, T.J.: The influence of a drag-reducing surfactant on a turbulent velocity field. J. Fluid Mech. 388, 1–20 (1999). https://doi.org/10.1017/S0022112099004498

    Article  MATH  Google Scholar 

  118. West, N.; Sammut, K.; Tang, Y.: Material selection and manufacturing of riblets for drag reduction: an updated review. Proc. Inst. Mech. Eng. Part L: J. Mater. Des. Appl. 232(7), 610–622 (2018). https://doi.org/10.1177/1464420716641452

    Article  Google Scholar 

  119. White, A.; Hemmings, J.A.G.: Drag Reduction by Additives: Review and Bibliography. BHRA Fluid Eng. (1976)

  120. White, C.M.; Mungal, M.G.: Mechanics and prediction of turbulent drag reducation with polymer additives. Annu. Rev. Fluid Mech. 40, 235–256 (2008)

  121. Xi, L.: Turbulent drag reduction by polymer additives: fundamentals and recent advances. Phys. Fluids 31, 121302 (2019). https://doi.org/10.1063/1.5129619

    Article  Google Scholar 

  122. Yan, X.; You, L.; Kang, Y.; Li, X.; Xu, C.; She, J.: Impact of drilling fluids on friction coefficient of brittle gas shale. Int. J. Rock Mech. Min. Sci. 106, 144–152 (2018). https://doi.org/10.1016/J.IJRMMS.2018.04.026

    Article  Google Scholar 

  123. Yang, B.; Zhao, J.; Mao, J.; Tan, H.; Zhang, Y.; Song, Z.: Review of friction reducers used in slickwater fracturing fluids for shale gas reservoirs. J. Nat. Gas Sci. Eng. 62, 302–313 (2019). https://doi.org/10.1016/j.jngse.2018.12.016

    Article  Google Scholar 

  124. Yu, C.; Liu, M.; Zhang, C.; Yan, H.; Zhang, M.; Wu, Q.; Liu, M.; Jiang, L.: Bio-inspired drag reduction: from nature organisms to artificial functional surfaces. Giant 2, 100017 (2020). https://doi.org/10.1016/j.giant.2020.100017

    Article  Google Scholar 

  125. Yuan, Y.; Jing, J.; Yin, R.; Jing, P.; Hu, J.: Experimental research on cationic surfactants in the drag reduction of water injection pipeline. SPE Prod. Oper. 37(2), 331–345 (2022)

    Google Scholar 

  126. Yunqing, G.; Tao, L.; Jiegang, M.; Zhengzan, S.; Peijian, Z.: Analysis of drag reduction methods and mechanisms of turbulent. Appl. Bionics Biomech. (2017). https://doi.org/10.1155/2017/6858720

    Article  Google Scholar 

  127. Yusuf, N.; Al-Wahaibi, T.; Al-Wahaibi, Y.; Al-Ajmi, A.; Al-Hashmi, A.R.; Olawale, A.S.; Mohammed, I.A.: Experimental study on the effect of drag reducing polymer on flow patterns and drag reduction in a horizontal oil-water flow. Int. J. Heat Fluid Flow 37, 74–80 (2012). https://doi.org/10.1016/j.ijheatfluidflow.2012.04.014

    Article  Google Scholar 

  128. Zakin, J.L.; Lu, B.; Bewersdorff, H.W.: Surfactant drag reduction. Rev. Chem. Eng. 14, 253–320 (1998). https://doi.org/10.1515/REVCE.1998.14.4-5.253/MACHINEREADABLECITATION/RIS

    Article  Google Scholar 

  129. Zhang, H.; Patel, A.; Foxenberg, W.; Swaco, M.; 2012.: Lubricants and drag reducers for completion fluids – An analysis of similarities and differences. AADE-12-FTCE-49 Lubr

  130. Zhang, R.; Nasr-el-din, H.; Texas, A.; Station, C.: Multiscale investigation of a less-damaging friction reducer to mitigate formation damage in unconventional shale reservoirs. Improv. Oil Gas Recover. (2020). https://doi.org/10.14800/iogr.455

    Article  Google Scholar 

  131. Zhang, Y.; Mao, J.; Xu, T.; Zhang, Z.; Yang, B.; Mao, J.; Yang, X.: Preparation of a novel fracturing fluid with good heat and shear resistance. RSC Adv 9, 1199–1207 (2019). https://doi.org/10.1039/C8RA09483G

    Article  Google Scholar 

  132. Zhang, Y.; Zhou, F.; Liu, Y.: Influence factors of multifunctional viscous drag reducers and their optimization for unconventional oil and gas reservoirs. ACS Omega 6, 32101–32108 (2021). https://doi.org/10.1021/acsomega.1c04869

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahul Gajbhiye.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

AL-Dogail, A., Gajbhiye, R. & Patil, S. A Review of Drag-Reducing Agents (DRAs) in Petroleum Industry. Arab J Sci Eng 48, 8287–8305 (2023). https://doi.org/10.1007/s13369-022-07184-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-07184-8

Keywords

Navigation