Skip to main content
Log in

Review paper: Semiconductor nanoparticles with surface passivation and surface plasmon

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Semiconductor nanoparticles have recently attracted a significant amount of attention from the materials science community. Nanoparticles with diameters in the range of 1 nm to 20 nm exhibit unique physical properties that give rise to many potential applications. Two fundamental factors are crucial as regards the novel properties of semiconductor nanoparticles. The first is the large surface-to-volume ratio. In this regard, the surface states are likely to trap electrons and/or holes, and induce a nonradiative recombination of these charge carriers, leading to a reduction in the luminescent and photovoltaic efficiency. The second approach takes advantage of the surface-plasmon resonance from metal nanostructures to semiconductors. The interactions between the semiconductor nanoparticles and the surface plasmons generate enhanced emission by electromagnetic-field amplification, and also causes the suppression of the emission by the energy transfer between the semiconductor and the metal nanoparticles. Therefore, surface passivation and surface plasmon in semiconductor nanoparticles with controlled nanostructures are important when attempting to improve both the luminescent and photovoltaic efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.-T. Jang, S. Jung, J.-W. Seo, M.-C. Kim, E. Sim, Y. Oh, S. Nam, B. Park, and J. Cheon, J. Am. Chem. Soc. 133, 7636 (2011).

    Article  CAS  Google Scholar 

  2. Y. Wang, F. Su, J. Y. Lee, and X. S. Zhao, Chem. Mater. 18, 1347 (2006).

    Article  CAS  Google Scholar 

  3. J.-W. Seo, J.-T. Jang, S.-W. Park, C. Kim, B. Park, and J. Cheon, Adv. Mater. 20, 4269 (2008).

    Article  CAS  Google Scholar 

  4. J.-W. Seo, Y.-W. Jun, S.-W. Park, H. Nah, T. Moon, B. Park, J.-G. Kim, Y. J. Kim, and J. Cheon, Angew. Chem. Int. Ed. 119, 8828 (2007).

    Article  Google Scholar 

  5. D. Deng and J. Y. Lee, Chem. Mater. 20, 1841 (2008).

    Article  CAS  Google Scholar 

  6. B. Kim, C. Kim, D. Ahn, T. Moon, J. Ahn, Y. Park, and B. Park, Electrochem. Solid-State Lett. 10, A32 (2007); J. Cho, T.-G. Kim, C. Kim, J.-G. Lee, Y.-W. Kim, and B. Park, J. Power Sources 146, 58 (2005).

    Article  CAS  Google Scholar 

  7. M.-S. Park, G.-X. Wang, Y.-M. Kang, D. Wexler, S.-X. Dou, and H.-K. Liu, Angew. Chem. 119, 764 (2007).

    Article  Google Scholar 

  8. T.-J. Kim, C. Kim, D. Son, M. Choi, and B. Park, J. Power Sources 167, 529 (2007).

    Article  CAS  Google Scholar 

  9. D. Ahn, J.-G. Lee, J. S. Lee, J. Kim, J. Cho, and B. Park, Curr. Appl. Phys 7, 172 (2007); Y. J. Kim, H. Kim, B. Kim, D. Ahn, J.-G. Lee, T.-J. Kim, D. Son, J. Cho, Y.-W. Kim, and B. Park, Chem. Mater. 15, 1505 (2003).

    Article  Google Scholar 

  10. T. Moon, C. Kim, S.-T. Hwang, and B. Park, Electrochem. Solid-State Lett. 9, A408 (2006).

    Article  CAS  Google Scholar 

  11. X. W. Lou, Y. Wang, C. Yuan, J. Y. Lee, and L. A. Archer, Adv. Mater. 18, 2325 (2006).

    Article  CAS  Google Scholar 

  12. J.-G. Lee, B. Kim, J. Cho, Y.-W. Kim, and B. Park, J. Electrochem. Soc. 151, A801 (2004).

    Article  CAS  Google Scholar 

  13. D. Son, E. Kim, T.-G. Kim, M. G. Kim, J. Cho, and B. Park, Appl. Phys. Lett. 85, 5875 (2004).

    Article  CAS  Google Scholar 

  14. J. Cho, B. Kim, J.-G. Lee, Y.-W. Kim, and B. Park, J. Electrochem. Soc. 152, A32 (2005).

    Article  CAS  Google Scholar 

  15. E. Kim, D. Son, T.-G. Kim, J. Cho, B. Park, K. S. Ryu, and S. H. Chang, Angew. Chem. Int. Ed. 43, 5987 (2004); J. Cho, Y. J. Kim, T.-J. Kim, and B. Park, Angew. Chem. Int. Ed. 40, 3367 (2001).

    Article  CAS  Google Scholar 

  16. K.-F. Hsu, S.-Y. Tsay, and B.-J. Hwang, J. Mater. Chem. 14, 2690 (2004).

    Article  CAS  Google Scholar 

  17. J. Cho, Y.-W. Kim, B. Kim, J.-G. Lee, and B. Park, Angew. Chem. Int. Ed. 42, 1618 (2003).

    Article  CAS  Google Scholar 

  18. C. Kim, M. Noh, M. Choi, J. Cho, and B. Park, Chem. Mater. 17, 3297 (2005); T.-J. Kim, D. Son, J. Cho, B. Park, and H. Yang, Electrochim. Acta 49, 4405 (2004).

    Article  CAS  Google Scholar 

  19. S. Sun, G. Zhang, D. Geng, Y. Chen, R. Li, M. Cai, and X. Sun, Angew. Chem. Int. Ed. 50, 2674 (2011).

    Article  Google Scholar 

  20. Y. Park, S. Nam, Y. Oh, H. Choi, J. Park, and B. Park, J. Phys. Chem. C 115, 7092 (2011).

    Article  CAS  Google Scholar 

  21. H. Yang, Angew. Chem. Int. Ed. 50, 422 (2011).

    Article  Google Scholar 

  22. Y. Park, B. Lee, C. Kim, J. Kim, S. Nam, Y. Oh, and B. Park, J. Phys. Chem. C 114, 3688 (2010).

    Article  CAS  Google Scholar 

  23. P. Waszczuk, J. Solla-Gullon, H.-S. Kim, Y. Y. Tong, V. Montiel, A. Aldaz, and A. Wieckowski, J. Catal. 203, 1 (2001).

    Article  CAS  Google Scholar 

  24. C. Kim, B. Lee, Y. Park, B. Park, J. Lee, and H. Kim, Appl. Phys. Lett. 91, 3043 (2007); B. Park, G. B. Stephenson, S. M. Allen, and K. F. Ludwig, Jr., Phys. Rev. Lett. 68, 1742 (1992).

    Google Scholar 

  25. S. Alayoglu, A. U. Nilekar, M. Mavrikakis, and B. Eichhorn, Nature 7, 333 (2008).

    Article  CAS  Google Scholar 

  26. Y. Park, B. Lee, C. Kim, J. Kim, and B. Park, J. Mater. Res. 24, 140 (2009).

    Article  CAS  Google Scholar 

  27. S. C. Erwin, L. Zu, M. I. Haftel, A. L. Efros, T. A. Kennedy, and D. J. Norris, Nature 436, 91 (2005).

    Article  CAS  Google Scholar 

  28. V. L. Colvin, M. C. Schlamp, and A. P. Alivisatos, Nature 370, 354 (1994).

    Article  CAS  Google Scholar 

  29. R. N. Bhargava and D. Gallagher, Phys. Rev. Lett. 72, 416 (1994).

    Article  CAS  Google Scholar 

  30. T.-G. Kim and B. Park, Inorg. Chem. 44, 9895 (2005).

    Article  Google Scholar 

  31. N. S. Norberg and D. R. Gamelin, J. Phys. Chem. B 109, 20810 (2005).

    Article  CAS  Google Scholar 

  32. P. V. Radovanovic, N. S. Norbeg, K. E. McNally, and D. R. Gamelin, J. Am. Chem. Soc. 124, 15192 (2002).

    Article  CAS  Google Scholar 

  33. M. L. Pang, W. Y. Shen, and J. Lin, J. Appl. Phys. 97, 033511 (2005).

    Article  Google Scholar 

  34. J. Y. Cho, Y. R. Do, and Y.-D. Huh, Appl. Phys. Lett. 89, 131915 (2006).

    Article  Google Scholar 

  35. G. Hodes, J. Phys. Chem. C 112, 17778 (2008).

    Article  CAS  Google Scholar 

  36. R. J. Ellingson, M. C. Beard, J. C. Johnson, P. Yu, O. I. Micic, A. J. Nozik, A. Shabaev, and A. L. Efros, Nano Lett. 5 865 (2005).

    Article  CAS  Google Scholar 

  37. J. B. Sambur, T. Novet, and B. A. Parkinson, Science 330, 63 (2010).

    Article  CAS  Google Scholar 

  38. Y. Kim, W. Lee, D.-R. Jung, J. Kim, S. Nam, H. Kim, and B. Park, Appl. Phys. Lett. 96, 171901 (2010).

    Article  Google Scholar 

  39. I. Mora-Seró, S. Gimenez, F. Fabregat-Santiago, R. Gomez, Q. Shen, T. Toyoda, and J. Bisquert, Acc. Chem. Res. 42, 1848 (2009).

    Article  Google Scholar 

  40. T. Moon, S.-T. Hwang, D.-R. Jung, D. Son, C. Kim, J. Kim, M. Kang, and B. Park, J. Phys. Chem. C 111, 4164 (2007).

    Article  CAS  Google Scholar 

  41. D. Son, D.-R. Jung, J. Kim, T. Moon, C. Kim, and B. Park, Appl. Phys. Lett. 90, 101910 (2007).

    Article  Google Scholar 

  42. C. Lee, M. Ando, H. Enomoto, and N. Murase, J. Phys. Chem. C 112, 20190 (2008).

    Article  Google Scholar 

  43. A. A. Bol and A. Meijerink, J. Phys. Chem. B 105, 10203 (2001).

    Article  CAS  Google Scholar 

  44. H. Yang and P. H. Holloway, Adv. Funct. Mater. 14, 152 (2004).

    Article  Google Scholar 

  45. K. T. Shimizu, W. K. Woo, B. R. Fisher, H. J. Eisler, and M. G. Bawendi, Phys. Rev. Lett. 89, 117401 (2002).

    Article  CAS  Google Scholar 

  46. M. Mattila, T. Hakkarainen, H. Lipsanen, H. Jiang, and E. I. Kauppinen, Appl. Phys. Lett. 90, 033101 (2007).

    Article  Google Scholar 

  47. D.-R. Jung, D. Son, J. Kim, C. Kim, and B. Park, Appl. Phys. Lett. 93, 163188 (2008).

    Google Scholar 

  48. N. Myung, Y. Bae, and A. J. Bard, Nano Lett. 3, 747 (2003).

    Article  CAS  Google Scholar 

  49. J. Zhuang, X. Zhang, G. Wang, D. Li, W. Yang, and T. Li, J. Mater. Chem. 13, 1853 (2003).

    Article  CAS  Google Scholar 

  50. E. Jang, S. Jun, Y. Chung, and L. Pu, J. Phys. Chem. B 108, 4597 (2004).

    Article  CAS  Google Scholar 

  51. V. Biju, R. Kanemoto, Y. Matsumoto, S. Ishii, S. Nakanishi, T. Itoh, Y. Baba, and M. Ishikawa, J. Phys. Chem. C 111, 7924 (2007).

    Article  CAS  Google Scholar 

  52. D.-R. Jung, J. Kim, and B. Park, Appl. Phys. Lett. 96, 211908 (2010).

    Article  Google Scholar 

  53. X. Wang, L. Qu, J. Zhang, X. Peng, and M. Xiao, Nano Lett. 3, 1103 (2003).

    Article  CAS  Google Scholar 

  54. C. Carrillo-Carrión, S. Cárdenas, B. M. Simonet, and M. Valcárcel, Chem. Commun. 5214 (2009).

  55. J. Kim, H. Choi, C. Nahm, J. Moon, C. Kim, S. Nam, D.-R. Jung, and B. Park, J. Power Sources, in press (2011). [DOI:10.1016/j.jpowsour.2011.08.052]

  56. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, Nature Mater. 3, 601 (2004).

    Article  CAS  Google Scholar 

  57. K. Tanabe, J. Phys. Chem. C 112, 15721 (2008).

    Article  CAS  Google Scholar 

  58. D.-R. Jung, J. Kim, S. Nam, C. Nahm, H. Choi, J. I. Kim, J. Lee, C. Kim, and B. Park, Appl. Phys. Lett. 99, 041906 (2011).

    Article  Google Scholar 

  59. A. O. Govorov, G. W. Bryant, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, and R. R. Naik, Nano Lett. 6, 984 (2006).

    Article  CAS  Google Scholar 

  60. K. Aslan, M. Wu, J. R. Lakowicz, and C. D. Geddes, J. Am. Chem. Soc. 129, 1524 (2007).

    Article  CAS  Google Scholar 

  61. B. Ding, B. J. Lee, M. Yang, H. S. Jung, and J.-K. Lee, Adv. Energy Mater. 1, 415 (2011).

    Article  CAS  Google Scholar 

  62. M.-K. Kwon, J.-Y. Kim, B.-H. Kim, I.-K Park, C.-Y. Cho, C. C. Byeon, and S.-J. Park, Adv. Mater. 20, 1253 (2008).

    Article  CAS  Google Scholar 

  63. O. G. Tovmachenko, C. Graf, D. J. van den Hauvel, A. van Blaaderen, and H. C. Gerritsen, Adv. Mater. 18, 91 (2006).

    Article  CAS  Google Scholar 

  64. M.-S. Hu, H.-L. Chen, C.-H. Shen, L.-S. Hong, B.-R. Huang, K.-H. Chen, and L.-C. Chen, Nature Mater. 5, 102 (2006).

    Article  CAS  Google Scholar 

  65. H. S. Jang, H. Yang, S. W. Kim, J. Y. Han, S.-G. Lee, and D. Y. Jeon, Adv. Mater. 20, 2696 (2008).

    Article  CAS  Google Scholar 

  66. T.-G. Kim, Y.-W. Kim, J. S. Kim, and B. Park, J. Mater. Res. 19, 1400 (2004).

    Article  CAS  Google Scholar 

  67. K. H. Cho, S. I. Ahn, S. M. Lee, C. S. Choi, and K. C. Choi, Appl. Phys. Lett. 97, 193306 (2010).

    Article  Google Scholar 

  68. P. P. Pompa, L. Martiradonna, A. D. Torre, F. D. Sala, L. Manna, M. D. Vittorio, F. Calabi, B. Cingolani, and R. Rinaldi, Nature Nanotechnol. 1, 126 (2006).

    Article  CAS  Google Scholar 

  69. Y. Ito, K. Matsuda, and Y. Kanemitsu, Phys. Rev. B 75, 033309 (2007).

    Article  Google Scholar 

  70. L. M. Liz-Marzan, Langmuir 22, 32 (2006).

    Article  CAS  Google Scholar 

  71. K. Okamoto, I. Niki, and A. Scherer, Appl. Phys. Lett. 87, 071102 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dae-Ryong Jung or Byungwoo Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jung, DR., Kim, J., Nahm, C. et al. Review paper: Semiconductor nanoparticles with surface passivation and surface plasmon. Electron. Mater. Lett. 7, 185–194 (2011). https://doi.org/10.1007/s13391-011-0902-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-011-0902-4

Keywords

Navigation