Skip to main content
Log in

Fabrication of Conductive Macroporous Structures Through Nano-phase Separation Method

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Thermoelectric power generation performance is characterized on the basis of the figure of merit, which tends to be high in thermoelectric materials with high electrical conductivity and low thermal conductivity. Porous structures cause phonon scattering, which decreases thermal conductivity. In this study, we fabricated porous structures for thermoelectric devices via nano-phase separation of silica particles from a polyacrylonitrile (PAN) matrix via a sol–gel process. The porosity was determined by control of silica particle size with various the mixing ratio of tetraethylorthosilicate as the precursor of silica particles to PAN. High electrical conductivity was maintained by subsequent carbonization of the PAN matrix in spited of a high porosity. As the results, the conductive porous structures having porosity from 13.9 to 83.3 (%) was successfully fabricated, keeping their electrical conductivities.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Naboka, O., Sanz-Velasco, A., Lundgren, P., Enoksson, P., Gatenholm, P.: Cobalt (II) chloride promoted formation of honeycomb patterned cellulose acetate films. J. Colloid Interface Sci. 367, 485 (2012)

    Article  Google Scholar 

  2. Li, Y., Fu, Z.Y., Su, B.L.: Hierarchically structured porous materials for energy conversion and storage. Adv. Funct. Mater. 22, 4634 (2012)

    Article  Google Scholar 

  3. Zukalova, M., Zukal, A., Kavan, L., Nazeeruddin, M.K., Liska, P., Grätzel, M.: Organized mesoporous TiO2 films exhibiting greatly enhanced performance in dye-sensitized solar cells. Nano Lett. 5, 1789 (2005)

    Article  Google Scholar 

  4. Liu, W., Chen, Z., Zhou, G., Sun, Y., Lee, H.R., Liu, C., Yao, H., Bao, Z., Cui, Y.: 3D porous sponge-inspired electrode for stretchable lithium-ion batteries. Adv. Mater. 28, 3578 (2016)

    Article  Google Scholar 

  5. Wolf, A., Brendel, R.: Thermal conductivity of sintered porous silicon films. Thin Solid Films 513, 385 (2006)

    Article  Google Scholar 

  6. Snyder, G.J., Toberer, E.S.: Complex thermoelectric materials. Nat. Mater. 7, 105 (2008)

    Article  Google Scholar 

  7. Cornett, J.E., Rabin, O.: Thermoelectric figure of merit calculations for semiconducting nanowires. Appl. Phys. Lett. 98, 182104 (2011)

    Article  Google Scholar 

  8. Cornett, J.E., Rabin, O.: Universal scaling relations for the thermoelectric power factor of semiconducting nanostructures. Phys. Rev. B 84, 205410 (2011)

    Article  Google Scholar 

  9. Li, J.F., Liu, W.S., Zhao, L.D., Zhou, M.: High-performance nanostructured thermoelectric materials. NPG Asia Mater. 2, 152 (2010)

    Article  Google Scholar 

  10. Shu, J., Xia, R., Qian, J., Miao, J., Su, L., Cao, M., Lin, H., Chen, P., Chen, J.: Preparation and study on thermal conductive composites of chlorinated polyethylene rubber reinforced by boron nitride particles. Macromol. Res. 24, 640 (2016)

    Article  Google Scholar 

  11. Kim, W., Zide, J., Gossard, A., Klenov, D., Stemmer, S., Shakouri, A., Majumdar, A.: Thermal conductivity reduction and thermoelectric figure of merit increase by embedding nanoparticles in crystalline semiconductors. Phys. Rev. Lett. 96, 045901 (2006)

    Article  Google Scholar 

  12. Tang, J., Wang, H.-T., Lee, D.H., Fardy, M., Huo, Z., Russell, T.P., Yang, P.: Holey silicon as an efficient thermoelectric material. Nano Lett. 10, 4279 (2010)

    Article  Google Scholar 

  13. Kim, H., Lee, J.K., Park, S.D., Ryu, B., Lee, J.E., Kim, B.S., Min, B.K., Joo, S.J., Lee, H.W., Cho, Y.-R.: Enhanced thermoelectric properties and development of nanotwins in Na-doped Bi0.5Sb1.5Te3 alloy. Electron. Mater. Lett. 12, 290 (2016)

    Article  Google Scholar 

  14. Lee, J.H., Galli, G.A., Grossman, J.C.: Nanoporous Si as an efficient thermoelectric material. Nano Lett. 8, 3750 (2008)

    Article  Google Scholar 

  15. Lee, S.H., Park, J.S., Lim, B.K., Mo, C.B., Lee, W.J., Lee, J.M., Hong, S.H., Kim, S.O.: Highly entangled carbon nanotube scaffolds by self-organized aqueous droplets. Soft Matter 5, 2343 (2009)

    Article  Google Scholar 

  16. Warren, S.C., Perkins, M.R., Adams, A.M., Kamperman, M., Burns, A.A., Arora, H., Herz, E., Suteewong, T., Sai, H., Li, Z.: A silica sol–gel design strategy for nanostructured metallic materials. Nat. Mater. 11, 460 (2012)

    Article  Google Scholar 

  17. Johnson, S.A., Ollivier, P.J., Mallouk, T.E.: Ordered mesoporous polymers of tunable pore size from colloidal silica templates. Science 283, 963 (1999)

    Article  Google Scholar 

  18. Imhof, A., Pine, D.: Ordered macroporous materials by emulsion templating. Nature 389, 948 (1997)

    Article  Google Scholar 

  19. Cui, L., Peng, J., Ding, Y., Li, X., Han, Y.: Ordered porous polymer films via phase separation in humidity environment. Polymer 46, 5334 (2005)

    Article  Google Scholar 

  20. Jung, D., Cho, S.G., Moon, T., Sohn, H.: Fabrication and characterization of porous silicon nanowires. Electron. Mater. Lett. 12, 17 (2016)

    Article  Google Scholar 

  21. Kim, S., Kwag, D.S., Lee, D.J., Lee, E.S.: Acidic pH-stimulated tiotropium release from porous poly(lactic-co-glycolic acid) microparticles containing 3-diethylaminopropyl-conjugated hyaluronate. Macromol. Res. 24, 176 (2016)

    Article  Google Scholar 

  22. Lee, J.P., Choi, S., Park, S.: Preparation of silica nanospheres and porous polymer membranes with controlled morphologies via nanophase separation. Nanoscale Res. Lett. 7, 1 (2012)

    Article  Google Scholar 

  23. Brinker, C.J., Keefer, K.D., Schaefer, D.W., Ashley, C.S.: Sol-gel transition in simple silicates. J. Non Cryst. Solids 48, 47 (1982)

    Article  Google Scholar 

  24. Nakanishi, K.: Pore structure control of silica gels based on phase separation. J. Porous Mat. 4, 67 (1997)

    Article  Google Scholar 

  25. Tan, L., Pan, D., Pan, N.: Gelation behavior of polyacrylonitrile solution in relation to aging process and gel concentration. Polymer 49, 5676 (2008)

    Article  Google Scholar 

  26. Zhou, Z., Lai, C., Zhang, L., Qian, Y., Hou, H.: Development of carbon nanofibers from aligned electrospun polyacrylonitrile nanofiber bundles and characterization of their microstructural, electrical, and mechanical properties. Polymer 50, 2999 (2009)

    Article  Google Scholar 

  27. Fitzer, E., Frohs, W., Heine, M.: Optimization of stabilization and carbonization treatment of PAN fibres and structural characterization of the resulting carbon fibres. Carbon 24, 387 (1986)

    Article  Google Scholar 

  28. Rahaman, M.S.A., Ismail, A.F., Mustafa, A.: A review of heat treatment on polyacrylonitrile fiber. Polym. Degrad. Stab. 92, 1421 (2007)

    Article  Google Scholar 

  29. Nataraj, S., Yang, K., Aminabhavi, T.: Polyacrylonitrile-based nanofibers—a state-of-the-art review. Prog. Polym. Sci. 37, 487 (2012)

    Article  Google Scholar 

  30. Chen, J., Harrison, I.: Modification of polyacrylonitrile (PAN) carbon fiber precursor via post-spinning plasticization and stretching in dimethyl formamide (DMF). Carbon 40, 25 (2002)

    Article  Google Scholar 

  31. Cuevas, F.G., Montes, J.M., Cintas, J., Urban, P.: Electrical conductivity and porosity relationship in metal foams. J. Porous Mater. 16, 675 (2008)

    Article  Google Scholar 

  32. Chung, W.H., Hwang, H.J., Kim, H.S.: Flash light sintered copper precursor/nanoparticle pattern with high electrical conductivity and low porosity for printed electronics. Thin Solid Films 580, 61 (2015)

    Article  Google Scholar 

  33. Bark, H., Lee, J., Lim, H., Koo, H.Y., Lee, W., Lee, H.: Simultaneous nitrogen doping and pore generation in thermo-insulating graphene films via colloidal templating. ACS Appl. Mater. Interfaces 8, 31617 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (NRF-2017R1A2B2010552 and 2015R1A5A7037615) and Civil Military Technology Cooperation Center (15-CM-SS-03 and 15-CM-EN-08).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyunjung Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S., Lee, H. Fabrication of Conductive Macroporous Structures Through Nano-phase Separation Method. Electron. Mater. Lett. 14, 83–88 (2018). https://doi.org/10.1007/s13391-018-0014-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-018-0014-5

Keywords

Navigation