Skip to main content
Log in

Strain-Dependent Polar Optical Phonon Scattering and Drive Current Optimization in Nanoscale Monolayer MoS2 FETs

  • Original Article - Theory, Characterization and Modeling
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Recently, microelectromechanical system has been used to dynamically strain atomically thin materials including MoS2. While strain can significantly modulate the electronic and phonon structures of monolayer MoS2, its impact on electron transport, especially in the dissipative regime, has not been well explored. In this paper, using a three-dimensional particle-based quantum-corrected Monte Carlo device simulator, the effects of uniaxial and biaxial strain on room-temperature electron transport in a model monolayer molybdenum disulphide (MoS2) based field-effect transistor have been investigated. In the beginning, the simulator has been validated against recently published experimental results. Overall, strain in monolayer MoS2 strongly affects the polar optical phonon modes as well as the electronic bandstructure. Uniaxial strain breaks the degeneracy of E′ Raman mode and results in phonon softening. In this case, our results show that, for both E+ and E Raman modes, ON current first increases for up to 3.7% of applied strain and then decreases as the strain is increased further. As for biaxial strain, we consider the effects of both tensile and compressive stresses. We find that the application of biaxial tensile strain boosts the ON current for up to 4% of strain. Especially, biaxial tensile strain leads to ~ 15.56% increase in the ON current, which is highest for any type of applied stress.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Kadantsev, E.S., Hawrylak, P.: Electronic structure of single MoS2 monolayer. Solid State Commun. 152(10), 909–913 (2012)

    Article  CAS  Google Scholar 

  2. Desai, S.B., Madhvapathy, S.R., Sachid, A.B., Llinas, J.P., Wang, Q., Ahn, G.H., Pitner, G., Kim, M.J., Bokor, J., Hu, C., Wong, H.S.P., Javey, A.: MoS2 transistors with 1-nanometer gate lengths. Science 354(6308), 99–102 (2016)

    Article  CAS  Google Scholar 

  3. Krasnozhon, D., Lembke, D., Nyffeler, C., Leblebici, Y., Kis, A.: MoS2 transistors operating at gigahertz frequencies. Nano Lett. 14, 5905–5911 (2014)

    Article  CAS  Google Scholar 

  4. Jena, D., Konar, A.: Enhancement of carrier mobility in semiconductors nanostructures by dielectric engineering. Phys. Rev. Lett. 98(13), 6805 (2007)

    Article  Google Scholar 

  5. Lin, M.W., Liu, L., Lan, Q., Tan, X., Dhindsa, K.S., Zeng, P., Naik, V.M., Cheng, M.M.C., Zhou, Z.: Mobility enhancement and highly efficient gating of monolayer MoS2 transistors with polymer electrolyte. J. Phys. D Appl. Phys. 45, 345102 (2012)

    Article  Google Scholar 

  6. Nan, H., Wu, Z., Jiang, J., Zafar, A., You, Y., Ni, Z.: Improving the electrical performance of MoS2 by mild oxygen plasma treatment. J. Phys. D Appl. Phys. 50(15), 4001 (2017)

    Article  Google Scholar 

  7. Conley, H.J., Wang, B., Ziegler, J.I., Haglund Jr., R.F., Pantelides, S.T., Bolotin, K.I.: Bandgap engineering of strained monolayer and bilayer MoS2. Nano Lett. 13(8), 3626–3630 (2013)

    Article  CAS  Google Scholar 

  8. Lloyd, D., Liu, X., Christopher, J.W., Cantley, L., Wadehra, A., Kim, B.L., Goldberg, B.B., Swan, A.K., Bunch, J.S.: Band gap engineering with ultralarge biaxial strains in suspended monolayer MoS2. Nano Lett. 16, 5836–5841 (2016)

    Article  CAS  Google Scholar 

  9. Ghosh, M.R., Amani, M., Wang, J., Duerloo, K.A.N., Sharma, A., Jarvis, K., Reed, E.J., Dongare, A.M., Banerjee, S.K., Terrones, M., Namburu, R.R., Dubey, M.: Effects of uniaxial and biaxial strain on few-layered terrace structures of MoS2 grown by vapor transport. ACS Nano 10, 3186–3197 (2016)

    Article  Google Scholar 

  10. Zhang, K., Hu, S., Zhang, Y., Zhang, T., Zhou, X., Sun, Y., Li, T.-X., Fan, H.J., Shen, G., Chen, X., Dai, N.: Self-induced uniaxial strain in MoS2 monolayers with local van der Waals-stacked interlayer interactions. ACS Nano 9(3), 2704–2710 (2015)

    Article  CAS  Google Scholar 

  11. He, K., Poole, C., Mak, K.F., Shan, J.: Experimental demonstration of continuous electronic structure tuning via strain in atomically thin MoS2. Nano Lett. 13, 2931–2936 (2013)

    Article  CAS  Google Scholar 

  12. Li, T.: Ideal strength and phonon instability in single-layer MoS2. Phys. Rev. B 85, 235407 (2012)

    Article  Google Scholar 

  13. Gomez, C., Roldán, R., Cappelluti, E., Buscema, M., Guinea, F., vanderZant, H.S.J., Steele, G.A.: Local strain engineering in atomically thin MoS2. Nano Lett. 13, 5361–5366 (2013)

    Article  Google Scholar 

  14. Yue, Q., Kang, J., Shao, Z., Zhang, X., Chang, S., Wang, G., Qin, S., Li, J.: Mechanical and electronic properties of monolayer MoS2 under elastic strain. Phys. Lett. A 376, 1166–1170 (2012)

    Article  CAS  Google Scholar 

  15. Manzeli, S., Allain, A., Ghadimi, A., Kis, A.: Piezoresistivity and strain-induced band gap tuning in atomically thin MoS2. Nano Lett. 15, 5330–5335 (2015)

    Article  CAS  Google Scholar 

  16. Shi, H., Pan, H., Zhang, Y.-W., Yakobson, B.I.: Quasiparticle band structures and optical properties of strained monolayer MoS2 and WS2. Phys. Rev. B 87, 155304 (2013)

    Article  Google Scholar 

  17. Fan, X., Chang, C.-H., Zheng, W.T., Kuo, J.-L., Singh, D.J.: The electronic properties of single-layer and multilayer MoS2 under high pressure. J. Phys. Chem. C 119, 10189–10196 (2015)

    Article  CAS  Google Scholar 

  18. Chen, S.F., Wu, Y.R.: Electronic properties of strained monolayer mos2 using tight binding method. In: 5th ISNE, Hsinchu, Taiwan (2016)

  19. Scalise, E., Houssa, M., Pourtois, G., Afanas’ev, V.V., Stesmans, A.: First-principles study of strained 2D MoS2. Phyica E 56, 416–421 (2014)

    Article  CAS  Google Scholar 

  20. Bertolazzi, S., Brivio, J., Kis, A.: Stretching and breaking of ultrathin MoS2. ACS Nano 5(12), 9703–9709 (2011)

    Article  CAS  Google Scholar 

  21. Christopher, J.W., Vutukuru, M., Lloyd, D., Bunch, J.S., Goldberg, B.B., Bishop, D.J., Swan, A.K.: Monolayer MoS2 strained to 1.3% with a microelectromechanical system. J. Microelectromech. Syst. 28, 254–263 (2019)

    Article  CAS  Google Scholar 

  22. Lu, P., Wu, X., Guo, W., Zeng, X.C.: Strain-dependent electronic and magnetic properties of MoS2 monolayer, bilayer, nanoribbons and nanotubes. Phys. Chem. Chem. Phys. 14, 13025–13040 (2012)

    Google Scholar 

  23. Pan, H., Zhang, Y.-W.: Tuning the electronic and magnetic properties of MoS2 nanoribbons by strain engineering. J. Phys. Chem. C 116, 11752–11757 (2012)

    Article  CAS  Google Scholar 

  24. Ahmed, S., Yalavarthi, K., Gaddipati, V., Muntahi, A., Sundaresan, S., Mohammed, S., Islam, S., Hindupur, R., John, D., Ogden, J.: Quantum atomistic simulations of nanoelectronic devices using QuADS. In: Vasileska, D., Goodnick, S.M. (eds.) Nano-Electronic Devices: Semiclassical and Quantum Transport Modeling, pp. 405–441. Springer, Berlin (2011)

    Chapter  Google Scholar 

  25. Ahmed, S., Rashid, M., Al-Qahtani, S., Nishat, S.R.K., Khair, K., Wu, Y., Muntahi, A., Taher, M., Abdullah, A.: Multiscale and multiphysics modeling of non-classical semiconductor devices. In: ICECE 2016, Proceedings of 9th International Conference on Electrical and Computer Engineering, Dhaka, Bangladesh (2016)

  26. Ma, N., Jena, D.: Charge scattering and mobility in atomically thin semiconductors. Phys. Rev X 4, 011043 (2014)

    Google Scholar 

  27. Qin, A.X., Prakash, A., Zhang, C., Cheng, L., Wang, Q., Lu, N., Kim, M.J., Kim, J., Cho, K., Addou, R., Hinkle, C.L., Appenzeller, J., Wallace, R.M.: Covalent nitrogen doping and compressive strain in MoS2 by remote N2 plasma exposure. Nano Lett. 16, 5437–5443 (2016)

    Article  Google Scholar 

  28. Vasileska, D., Ahmed, S.: Narrow-width SOI devices: the role of quantum mechanical size quantization effect and the unintentional doping on the device operation. IEEE Trans. Electron. Dev. 52, 227–236 (2005)

    Article  CAS  Google Scholar 

  29. Khan, H.R., Vasileska, D., Ahmed, S.S., Ringhofer, C., Heitzinger, C.: Modeling of FinFET: 3D MC simulation using FMM and unintentional doping effects on device operation. J. Comput. Electron. 3, 337–340 (2004)

    Article  Google Scholar 

  30. Ahmed, S.S.: Modeling quantum and coulomb effects in nanoscale devices. PhD Dissertation, Arizona State University (2005)

  31. Heitzinger, C.R., Ahmed, S., Vasileska, D.: 3D Monte-Carlo device simulations using an effective quantum potential including electron-electron interactions. J. Comput. Electron. 6, 15 (2007)

    Article  Google Scholar 

  32. Nedjalkov, M., Ahmed, S., Vasileska, D.: A self-consistent event biasing scheme for statistical enhancement. J. Comput. Electron. 3, 305–309 (2004)

    Article  Google Scholar 

  33. Ahmed, S., Ringhofer, C., Vasileska, D.: Parameter-free effective potential method for use in particle-based device simulations. IEEE Trans. Nanotechnol. 4, 465–471 (2005)

    Article  Google Scholar 

  34. Ahmed, S., Ringhofer, C., Vasileska, D.: Effective potential approach for modeling MOSFET devices. J. Comput. Electron. 2, 113–117 (2003)

    Article  CAS  Google Scholar 

  35. Lake, R., Klimeck, G., Bowen, R.C., Jovanovic, D.: Single and multiband modeling of quantum electron transport through layered semiconductor devices. J. Appl. Phys. 81(81), 7845–7869 (1997)

    Article  CAS  Google Scholar 

  36. Hüser, F., Olsen, T., Thygesen, K.S.: How dielectric screening in two-dimensional crystals affects the convergence of excited-state calculations: monolayer MoS2. Phys. Rev. B 88, 245309 (2013)

    Article  Google Scholar 

  37. Khair, K., Ahmed, S.: Effects of uniaxial strain on polar optical phonon scattering and electron transport in monolayer MoS2 FETs. In: Proceedings of 17th IEEE Conference on Nanotechnology IEEE-NANO 2017, pp. 246–249 (2017)

  38. Nourbakhsh, A., Zubair, A., Sajjad, R.N., Tavakkoli, A., Chen, W., Fang, S., Ling, X., Kong, J., Dresselhaus, M.S., Kaxiras, E., Berggren, K.K., Antoniadis, D., Palacios, T.: MoS2 field-effect transistor with sub-10 nm channel length. Nano Lett. 12, 7798–7806 (2016)

    Article  Google Scholar 

  39. Lundstrom, M.: Fundamentals of Carrier Transport. Cambridge University Press, Cambridge (2000)

    Book  Google Scholar 

  40. Khair, K., Ahmed, S.: Role of interfacial and intrinsic coulomb impurities in monolayer MoS2 FETs. In: Proceedings of 13th Nanotechnology Materials andDevices Conference IEEE-NMDC 2018, pp. 1–4 (2018)

Download references

Acknowledgements

This work was financially supported by the U.S. National Science Foundation Grant No. 1610474.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaikh S. Ahmed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khair, K.A., Ahmed, S.S. Strain-Dependent Polar Optical Phonon Scattering and Drive Current Optimization in Nanoscale Monolayer MoS2 FETs. Electron. Mater. Lett. 16, 299–309 (2020). https://doi.org/10.1007/s13391-020-00214-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-020-00214-3

Keywords

Navigation