Skip to main content
Log in

Abstract

A Tychonoff space X is called (sequentially) Ascoli if every compact subset (resp. convergent sequence) of \(C_k(X)\) is equicontinuous, where \(C_k(X)\) denotes the space of all real-valued continuous functions on X endowed with the compact-open topology. The classical Ascoli theorem states that each compact space is Ascoli. We show that a pseudocompact space X is Asoli iff it is sequentially Ascoli iff it is selectively \(\omega \)-bounded. The class of selectively \(\omega \)-bounded spaces is studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arhangel’skii, A.V.: Topological Function Spaces. Math. Appl., vol. 78. Kluwer Academic Publishers, Dordrecht (1992)

    Google Scholar 

  2. Banakh, T.: Fans and Their Applications in General Topology, Functional Analysis and Topological Algebra. arXiv:1602.04857

  3. Banakh, T., Bogachev, V., Kolesnikov, A.: \(k^\ast \)-Metrizable spaces and their applications. J. Math. Sci. 155, 475–522 (2008)

    MathSciNet  MATH  Google Scholar 

  4. Banakh, T., Gabriyelyan, S.: On the \({\cal{C}}_K\)-stable closure of the class of (separable) metrizable spaces. Monatshefte Math. 180, 39–64 (2016)

  5. Banakh, T., Gabriyelyan, S.: The Josefson–Nissenzweig property for locally convex spaces. arXiv:2003.06764

  6. Banakh, T., Gabriyelyan, S., Protasov, I.: On uniformly discrete subsets in uniform spaces and topological groups. Mat. Stud. 1(45), 76–97 (2016)

    MathSciNet  MATH  Google Scholar 

  7. Dorantes-Aldama, A., Shakhmatov, D.: Selective sequential pseudocompactness. Topol. Appl. 222, 53–69 (2017)

    MathSciNet  MATH  Google Scholar 

  8. Edwards, R.E.: Functional Analysis. Reinhart and Winston, New York (1965)

    MATH  Google Scholar 

  9. Engelking, R.: General Topology. Heldermann Verlag, Berlin (1989)

    MATH  Google Scholar 

  10. Frolík, Z.: The topological product of two pseudocompact spaces. Czech. Math. J. 10, 339–349 (1960)

    MathSciNet  MATH  Google Scholar 

  11. Gabriyelyan, S.: On the Ascoli property for locally convex spaces. Topol. Appl. 230, 517–530 (2017)

    MathSciNet  MATH  Google Scholar 

  12. Gabriyelyan, S.: Topological properties of strict \((LF)\)-spaces and strong duals of Montel strict \((LF)\)-spaces. Monatshefte Math. 189, 91–99 (2019)

    MathSciNet  MATH  Google Scholar 

  13. Gabriyelyan, S.: Locally convex properties of free locally convex spaces. J. Math. Anal. Appl. 480, 123453 (2019)

    MathSciNet  MATH  Google Scholar 

  14. Gabriyelyan, S.: Ascoli and sequentially Ascoli spaces. arXiv:2004.00075

  15. Gabriyelyan, S., Grebík, J., Ka̧kol J., Zdomskyy, L.: The Ascoli property for function spaces. Topol. Appl. 214, 35–50 (2016)

  16. Gabriyelyan, S., Grebík, J., Ka̧kol J., Zdomskyy, L.: Topological properties of function spaces over ordinal spaces. RACSAM 111, 1157–1161 (2017)

  17. Gabriyelyan, S., Ka̧kol, J., Plebanek, G.: The Ascoli property for function spaces and the weak topology of Banach and Fréchet spaces. Stud. Math. 233, 119–139 (2016)

  18. Gillman, L., Jerison, M.: Rings of Continuous Functions. Van Nostrand, New York (1960)

    MATH  Google Scholar 

  19. Glicksberg, I.: Stone–Čech compactifications of products. Trans. Am. Math. Soc. 90, 369–382 (1959)

    MATH  Google Scholar 

  20. Kato, A.: A note on pseudocompact spaces and \(k_R\)-spaces. Proc. Am. Math. Soc. 63, 175–176 (1977)

    MATH  Google Scholar 

  21. McCoy, R.A., Ntantu, I.: Topological Properties of Spaces of Continuous Functions. Lecture Notes in Math., vol. 1315 (1988)

  22. Morris, P.D., Wulbert, D.E.: Functional representations of topological algebras. Pac. J. Math. 22, 323–327 (1967)

    MathSciNet  MATH  Google Scholar 

  23. Narici, L., Beckenstein, E.: Topological Vector Spaces, 2nd edn. CRC Press, New York (2011)

    MATH  Google Scholar 

  24. Noble, N.: Ascoli theorems and the exponential map. Trans. Am. Math. Soc. 143, 393–411 (1969)

    MathSciNet  MATH  Google Scholar 

  25. Noble, N.: Countably compact and pseudocompact products. Czech. Math. J. 19, 390–397 (1969)

    MATH  Google Scholar 

  26. Saxon, S.A., Tweddle, I.: Mackey \(\aleph _0\)-barrelled spaces. Adv. Math. 145, 230–238 (1999)

    MathSciNet  MATH  Google Scholar 

  27. Terasaka, H.: On Cartesian product of compact spaces. Osaka Math. J. 4, 11–15 (1952)

    MathSciNet  MATH  Google Scholar 

  28. Vaughan, J.E.: Countably compact and sequentially compact spaces. In: Kunen, K., Vaughan, J. E. (eds.) Handbook of Set-theoretic Topology, pp. 569–602. Elsevier (1984)

Download references

Acknowledgements

The author thanks Taras Banakh for useful discussion on the name “selectively \(\omega \)-bounded”. I would like to thank the anonymous referees for useful remarks and suggestions. In particular, the question of whether the conditions (i)–(iv) in Theorem 1.2 are equivalent to the k-metrizability of \(C_k(X)\) belongs to the referee.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saak Gabriyelyan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gabriyelyan, S. Ascoli’s theorem for pseudocompact spaces. RACSAM 114, 174 (2020). https://doi.org/10.1007/s13398-020-00911-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13398-020-00911-6

Keywords

Mathematics Subject Classification

Navigation