Skip to main content

Advertisement

Log in

Manipulation of tumor metabolism for therapeutic approaches: ovarian cancer-derived cell lines as a model system

  • Original Paper
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Background

Malignant transformation of cells is often accompanied by up-regulation of glycolysis-related enzymes and transporters, as well as a distortion of mitochondrial respiration. As a consequence, most malignant tumors utilize high amounts of glucose and produce and accumulate high concentrations of lactate, even in the presence of oxygen. This phenomenon has been termed ‘Warburg Effect’. Here, we aimed at resolving the interrelation between tumor metabolism, reactive oxygen species, double strand DNA breaks and radio-resistance in ovarian cancer-derived cells.

Methods

As a model system two ovarian cancer-derived cell lines, OC316 and IGROV-1, and its corresponding xenografts were used. First, the metabolic properties of the xenografts were tested to ensure that initial in vitro data might later be transferred to in vivo data. In parallel, three inhibitors of tumor cell metabolism, 2-deoxy-D-glucose, an inhibitor of glycolysis, oxamate, a pyruvate analogue and inhibitor of lactate dehydrogenase, and rotenone, a specific inhibitor of mitochondrial electron complex I, were tested for their effect on the metabolism and radio-sensitivity of the respective ovarian cancer-derived cell lines.

Results

We found that all three inhibitors tested led to significant changes in the tumor cell energy metabolism at non-cytotoxic concentrations. Furthermore, we found that inhibition of tumor glycolysis by 2-deoxy-D-glucose in combination with rotenone decreased the radio-resistance at a clinically relevant radiation dose. This apparent radio-sensitizing effect appears to be based on an increased level of double strand DNA breaks 1 h and 24 h after gamma irradiation. Both cancer-derived cell lines maintained their metabolic properties, as well as their protein expression profiles and levels of reactive oxygen species in xenografts, thus providing a suitable model system for further in vivo investigations.

Conclusion

A combination of metabolic inhibitors and reactive oxygen species-generating therapies, such as irradiation, may effectively enhance the therapeutic response in particularly metabolically highly active (ovarian) tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A. Geurts van Kessel, The cancer genome: from structure to function. Cell. Oncol. 37, 155–165 (2014)

  2. O. Warburg, On the origin of cancer cells. Science 123, 309–314 (1956)

    Article  CAS  PubMed  Google Scholar 

  3. J.P. Bayley, P. Devilee, The Warburg effect in 2012. Curr. Opin. Oncol. 24, 62–67 (2012)

    Article  CAS  PubMed  Google Scholar 

  4. V. Gogvadze, B. Zhivotovsky, S. Orrenius, The Warburg effect and mitochondrial stability in cancer cells. Mol. Asp. Med. 31, 60–74 (2010)

    Article  CAS  Google Scholar 

  5. W.H. Koppenol, P.L. Bounds, C.V. Dang, Otto Warburg’s contributions to current concepts of cancer metabolism. Nat. Rev. Cancer 11, 325–337 (2011)

    Article  CAS  PubMed  Google Scholar 

  6. A. Herling, M. Konig, S. Bulik, H.G. Holzhutter, Enzymatic features of the glucose metabolism in tumor cells. FEBS J. 278, 2436–2459 (2011)

    Article  CAS  PubMed  Google Scholar 

  7. H.R. Oh, C.H. An, N.J. Yoo, S.H. Lee, Somatic mutations of amino acid metabolism-related genes in gastric and colorectal cancers and their regional heterogeneity—a short report. Cell. Oncol. 37, 455–461 (2014)

    Article  CAS  Google Scholar 

  8. D.M. Brizel, T. Schroeder, R.L. Scher, S. Walenta, R.W. Clough, M.W. Dewhirst, W. Mueller-Klieser, Elevated tumor lactate concentrations predict for an increased risk of metastases in head-and-neck cancer. Int. J. Radiat. Oncol. Biol. Phys. 51, 349–353 (2001)

    Article  CAS  PubMed  Google Scholar 

  9. S. Walenta, M. Wetterling, M. Lehrke, G. Schwickert, K. Sundfor, E.K. Rofstad, W. Mueller-Klieser, High lactate levels predict likelihood of metastases, tumor recurrence, and restricted patient survival in human cervical cancers. Cancer Res. 60, 916–921 (2000)

    CAS  PubMed  Google Scholar 

  10. V. Quennet, A. Yaromina, D. Zips, A. Rosner, S. Walenta, M. Baumann, W. Mueller-Klieser, Tumor lactate content predicts for response to fractionated irradiation of human squamous cell carcinomas in nude mice. Radiother. Oncol. 81, 130–135 (2006)

    Article  CAS  PubMed  Google Scholar 

  11. U.G. Sattler, S.S. Meyer, V. Quennet, C. Hoerner, H. Knoerzer, C. Fabian, A. Yaromina, D. Zips, S. Walenta, M. Baumann, W. Mueller-Klieser, Glycolytic metabolism and tumour response to fractionated irradiation. Radiother. Oncol. 94, 102–109 (2010)

    Article  CAS  PubMed  Google Scholar 

  12. F. Hirschhaeuser, U.G. Sattler, W. Mueller-Klieser, Lactate: a metabolic key player in cancer. Cancer Res. 71, 6921–6925 (2011)

    Article  CAS  PubMed  Google Scholar 

  13. U.G. Sattler, W. Mueller-Klieser, The anti-oxidant capacity of tumour glycolysis. Int. J. Radiat. Biol. 85, 963–971 (2009)

    Article  CAS  PubMed  Google Scholar 

  14. U.G. Sattler, F. Hirschhaeuser, W.F. Mueller-Klieser, Manipulation of glycolysis in malignant tumors: fantasy or therapy? Curr. Med. Chem. 17, 96–108 (2010)

    Article  CAS  PubMed  Google Scholar 

  15. C. Fabian, L. Koetz, E. Favaro, S. Indraccolo, W. Mueller-Klieser, U.G. Sattler, Protein profiles in human ovarian cancer cell lines correspond to their metabolic activity and to metabolic profiles of respective tumor xenografts. FEBS J. 279, 882–891 (2012)

    Article  CAS  PubMed  Google Scholar 

  16. J. Benard, S.J. Da, M.C. De Blois, P. Boyer, P. Duvillard, E. Chiric, G. Riou, Characterization of a human ovarian adenocarcinoma line, IGROV1, in tissue culture and in nude mice. Cancer Res. 45, 4970–4979 (1985)

    CAS  PubMed  Google Scholar 

  17. A. Alama, F. Barbieri, A. Favre, M. Cagnoli, E. Noviello, F. Pedulla, M. Viale, G. Foglia, N. Ragni, Establishment and characterization of three new cell lines derived from the ascites of human ovarian carcinomas. Gynecol. Oncol. 62, 82–88 (1996)

    Article  CAS  PubMed  Google Scholar 

  18. E. Favaro, G. Nardo, L. Persano, M. Masiero, L. Moserle, R. Zamarchi, E. Rossi, G. Esposito, M. Plebani, U. Sattler, T. Mann, W. Mueller-Klieser, V. Ciminale, A. Amadori, S. Indraccolo, Hypoxia inducible factor-1alpha inactivation unveils a link between tumor cell metabolism and hypoxia-induced cell death. Am. J. Pathol. 173, 1186–1201 (2008)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. S. Domcke, R. Sinha, D.A. Levine, C. Sander, N. Schultz, Evaluating cell lines as tumour models by comparison of genomic profiles. Nat. Commun. 4, 2126 (2013)

    Article  PubMed Central  PubMed  Google Scholar 

  20. C.J. Lord, A. Ashworth, Mechanisms of resistance to therapies targeting BRCA-mutant cancers. Nat. Med. 19, 1381–1388 (2013)

    Article  CAS  PubMed  Google Scholar 

  21. C. Arienti, A. Tesei, S. Carloni, P. Ulivi, A. Romeo, G. Ghigi, E. Menghi, A. Sarnelli, E. Parisi, R. Silvestrini, W. Zoli, SLUG silencing increases radiosensitivity of melanoma cells in vitro. Cell. Oncol. 36, 131–139 (2013)

    Article  CAS  Google Scholar 

  22. Y. Zhou, E.O. Hileman, W. Plunkett, M.J. Keating, P. Huang, Free radical stress in chronic lymphocytic leukemia cells and its role in cellular sensitivity to ROS-generating anticancer agents. Blood 101, 4098–4104 (2003)

    Article  CAS  PubMed  Google Scholar 

  23. J.P. Fruehauf, F.L. Meyskens Jr., Reactive oxygen species: a breath of life or death? Clin. Cancer Res. 13, 789–794 (2007)

    Article  CAS  PubMed  Google Scholar 

  24. M.A. Fath, A.R. Diers, N. ykin-Burns, A.L. Simons, L. Hua, D.R. Spitz, Mitochondrial electron transport chain blockers enhance 2-deoxy-D-glucose induced oxidative stress and cell killing in human colon carcinoma cells. Cancer Biol. Ther. 8, 1228–1236 (2009)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. N. Li, K. Ragheb, G. Lawler, J. Sturgis, B. Rajwa, J.A. Melendez, J.P. Robinson, Mitochondrial complex I inhibitor rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production. J. Biol. Chem. 278, 8516–8525 (2003)

    Article  CAS  PubMed  Google Scholar 

  26. H. Pelicano, L. Feng, Y. Zhou, J.S. Carew, E.O. Hileman, W. Plunkett, M.J. Keating, P. Huang, Inhibition of mitochondrial respiration: a novel strategy to enhance drug-induced apoptosis in human leukemia cells by a reactive oxygen species-mediated mechanism. J. Biol. Chem. 278, 37832–37839 (2003)

    Article  CAS  PubMed  Google Scholar 

  27. Y. Zhao, H. Liu, Z. Liu, Y. Ding, S.P. Ledoux, G.L. Wilson, R. Voellmy, Y. Lin, W. Lin, R. Nahta, B. Liu, O. Fodstad, J. Chen, Y. Wu, J.E. Price, M. Tan, Overcoming trastuzumab resistance in breast cancer by targeting dysregulated glucose metabolism. Cancer Res. 71, 4585–4597 (2011)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. D.A. Tennant, R.V. Duran, E. Gottlieb, Targeting metabolic transformation for cancer therapy. Nat. Rev. Cancer 10, 267–277 (2010)

    Article  CAS  PubMed  Google Scholar 

Download references

Financial Support

Deutsche Forschungsgemeinschaft DFG (SA 1749/3-1; MU 576/15-1); Universita’ di Padova – Progetto d’Ateneo 2010 to S.I.; AIRC (Project n. IG14295).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Mueller-Klieser.

Additional information

Kristina Goetze and Christian G. Fabian shared first authorship

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goetze, K., Fabian, C.G., Siebers, A. et al. Manipulation of tumor metabolism for therapeutic approaches: ovarian cancer-derived cell lines as a model system. Cell Oncol. 38, 377–385 (2015). https://doi.org/10.1007/s13402-015-0237-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-015-0237-5

Keywords

Navigation