Skip to main content

Advertisement

Log in

Investigation on the effects of experimental STZ-induced diabetic rat model on basal membrane structures and gap junctions of skin

  • Original Article
  • Published:
International Journal of Diabetes in Developing Countries Aims and scope Submit manuscript

Abstract

This study was designed to determine the impairment of the skin structure in experimentally-induced diabetes with injection of streptozotocin (STZ). Experimental groups consisted of controls (group 1, N = 10) and diabetes groups (group 2, N = 10). Dorsal skin was removed for routine histological tissue procedures. Hematoxylene and Eosin (HE), Masson’s Trichrome and Periodic Acid Schiff (PAS) stainings, immunohistochemical connexin 43 (Cx43) and type IV collagen stainings were applied. Morphometry of epidermal thickness were also determined. Group 2 revealed decrease in epidermal thickness with disintegration of epithelium and decrease of dermal collagen fibers. Stratum spinosum were morphologically abnormal for group 2. Measurements of epidermal thickness revealed statistically significant decrease (P = 0.000). PAS staining for group 2 revealed disruption of the basement membrane. Epithelial scar formation, deterioration of transformation in the polyhedral cells, degradation of epidermis and decrease in PAS staining for vascular structures were observed, whereas the reticular dermis and hair follicles were normal. Collagen fiber density in group 2 were found to be prominently decreased in dermis with Masson’s Trichrome staining. Evident decrease in immunostaining of Cx43 and type IV collagen were also shown in diabetic group in comparison to the controls. In conclusion, diabetes not only induced impairment of the epidermal integrity and deterioration in the epidermis via loss of gap junctions (the most prominent cellular junctional complex), but also caused dramatically negative impact on the dermal collagen content, and integrity of the basement membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Cowie CC, Rust KF, Ford ES, Eberhardt MS, Byrd-Holt DD, et al. Full accounting of diabetes and pre-diabetes in the U.S. population in 1988–1994 and 2005–2006. Diab Care. 2009;32:287–94.

    Article  PubMed  Google Scholar 

  2. Kahn CR, Weir GC, King GL, Jacobson AM, Moses AC, Smith RJ. Joslin’s Diabetes Mellitus. 14th ed. Boston: Lippincott Williams and Wilkins; 2005. p. 331–8.

    Google Scholar 

  3. Cotran RS., Kumar V, Collins T. Robbins pathologic basis of disease. 6th ed, Philadelphia: WB Saunders, 1999.

  4. Kosova B, Cetintaş VB, Yavaşoğlu A, Altay B, Aktuğ H. From a molecular biological viewpoint, does endothelin type A receptor antagonist therapy reduce diabetes-induced testicular damage in rats? Urology. 2011;77:250.7–13.

    Article  Google Scholar 

  5. Masuzawa K, Jesmin S, Maeda S, Zaedi S, Shimojo N, Miyauchi T, et al. Effect of endothelin dual receptor antagonist on VEGF levels in streptozotocin-induced diabetic rat retina. Exp Biol Med (Maywood). 2006;231:1090–4.

    CAS  Google Scholar 

  6. Gartner LP, Hiatt JL. Color Textbook of Histology. 3rd ed. Philadelphia: Saunders/Elsevier; 2007.

    Google Scholar 

  7. Kanitakis J. Anatomy, histology and immunohistochemistry of normal human skin. Eur J Dermatol. 2002;12:390–9.

    PubMed  Google Scholar 

  8. Kierszenbaum AL. Histology and cell biology: an introduction to pathology. 2nd ed. Philadelphia: Mosby/Elsevier; 2007.

    Google Scholar 

  9. Lee SH, Jeong SK, Ahn SK. An update of the defensive barrier function of skin. Yonsei Med J. 2006;47:293–306.

    Article  PubMed  CAS  Google Scholar 

  10. Goodenough DA, Paul DL. Beyond the gap: functions of unpaired connexon channels. Nat Rev Mol Cell Biol. 2003;4:285–94.

    Article  PubMed  CAS  Google Scholar 

  11. Meşe G, Richard G, White TW. Gap junctions: basic structure and function. J Invest Dermatol. 2007;127:2516–24.

    Article  PubMed  Google Scholar 

  12. Brissette JL, Kumar NM, Gilula NB, Dotto GP. The tumor promoter 12-O-tetradecanoylphorbol-13-acetate and the ras oncogene modulate expression and phosphorylation of gap junction proteins. Mol Cell Biol. 1991;11:5364–71.

    PubMed  CAS  Google Scholar 

  13. Laird DW. Life cycle of connexins in health and disease. Biochem J. 2006;394:527–43.

    Article  PubMed  CAS  Google Scholar 

  14. Risek B, Klier FG, Gilula NB. Multiple gap junction genes are utilized during rat skin and hair development. Development. 1992;116:639–51.

    PubMed  CAS  Google Scholar 

  15. Rossello RA, Kohn DH. Gap junction intercellular communication: a review of a potential platform to modulate craniofacial tissue engineering. J Biomed Mater Res B Appl Biomater. 2009;88:509–18.

    PubMed  Google Scholar 

  16. Salomon D, Masgrau E, Vischer S, Ullrich S, Dupont E, Sappino P, et al. Topography of mammalian connexins in human skin. J Invest Dermatol. 1994;103:240–7.

    Article  PubMed  CAS  Google Scholar 

  17. Burgeson RE, Christiano AM. The dermal-epidermal junction. Curr Opin Cell Biol. 1997;9:651–8.

    Article  PubMed  CAS  Google Scholar 

  18. Inoue S. Ultrastructure of basement membranes. Int Rev Cytol. 1989;117:57–98.

    Article  PubMed  CAS  Google Scholar 

  19. Marinkovich MP, Keene DR, Rimberg CS, Burgeson RE. Cellular origin of the dermal-epidermal basement membrane. Dev Dyn. 1993;197:255–67.

    Article  PubMed  CAS  Google Scholar 

  20. Wang TW, Sun JS, Huang YC, Wu HC, Chen LT, Lin FH. Skin basement membrane and extracellular matrix proteins characterization and quantification by real time RT-PCR. Biomaterials. 2006;27:5059–68.

    Article  PubMed  CAS  Google Scholar 

  21. Dai FX, Diederich A, Skopec J, Diederich D. Diabetes-induced endothelial dysfunction in streptozotocin-treated rats: role of prostaglandin endoperoxides and free radicals. J Am Soc Nephrol. 1993;4:1327–36.

    PubMed  CAS  Google Scholar 

  22. Paron NG, Lambert PW. Cutaneous manifestations of diabetes mellitus. Prim Care. 2000;27:371–83.

    Article  PubMed  CAS  Google Scholar 

  23. Ferringer T, Miller 3rd F. Cutaneous manifestations of diabetes mellitus. Dermatol Clin. 2002;20:483–92.

    Article  PubMed  Google Scholar 

  24. Huntley AC. The cutaneous manifestations of diabetes mellitus. J Am Acad Dermatol. 1982;7:427–55.

    Article  PubMed  CAS  Google Scholar 

  25. Richard G, Abdullah S. Connexins: a connection with the skin. Getting to the heart of gap junction pathology. Novartis Foundations Symposium: Gap junction-mediated intercellular signalling in health and disease. Exp Dermatol. 2000;9:77–96.

    Article  PubMed  CAS  Google Scholar 

  26. Feldman EC: Disease of Endocrine Pancreas. In Textbook of Veterinary Internal Medicine. Disease of the Dog and Cat. 2nd ed. Philadelphia: Saunders; 1983; 67: 1615–1650

  27. Chithra P, Sajithlal GB, Chandrakasan G. Influence of Aloe vera on collagen characteristics in healing dermal wounds in rats. Mol Cell Biochem. 1998;181:71–6.

    Article  PubMed  CAS  Google Scholar 

  28. Schneir M, Ramamurthy N, Golub L. Skin collagen metabolism in the streptozotocin-induced diabetic rat. Enhanced catabolism of collagen formed both before and during the diabetic state. Diabetes. 1982;31:426–31.

    Article  PubMed  CAS  Google Scholar 

  29. Cox NH, More IA, McCruden D, Jones SK, Ong-Tone L, Finlay AY, et al. Electron microscopy of clinically normal skin of diabetic patients. Clin Exp Dermatol. 1988;13:11–5.

    Article  PubMed  CAS  Google Scholar 

  30. Sternberg M, Cohen-Forterre L, Peyroux J. Connective tissue in diabetes mellitus: biochemical alterations of the intercellular matrix with special reference to proteoglycans, collagens and basement membranes. Diabete Metab. 1985;11:27–50.

    PubMed  CAS  Google Scholar 

  31. Chen XF, Lin WD, Lu SL, Xie T, Ge K, Shi YQ, et al. Mechanistic study of endogenous skin lesions in diabetic rats. Exp Dermatol. 2010;19:1088–95.

    Article  PubMed  CAS  Google Scholar 

  32. Şensoy N, Gençoğlan G. Tip II diyabetli hastalarda deri bulgularının vücut kitle indeksi ve HBA1c ile ilişkisi (Association of cutaneous manifestations with body mass index and HbA1c levels in type II diabetes mellitus patients). Anatol J Clin Investig. 2009;3:213–7.

    Google Scholar 

  33. Yurchenco PD, Patton BL. Developmental and pathogenic mechanisms of basement membrane assembly. Curr Pharm Des. 2009;15:1277–94.

    Article  PubMed  CAS  Google Scholar 

  34. Goliger JA, Paul DL. Wounding alters epidermal connnexin expression and gap junction-mediated intercellular communication. Mol Biol Cell. 1995;6:1491–501.

    PubMed  CAS  Google Scholar 

  35. Solan JL, Lampe PD. Connexin43 phosphorylation: structural changes and biological effects. Biochem J. 2009;419:261–72.

    Article  PubMed  CAS  Google Scholar 

  36. Kelsell DP, Wilgoss AL, Richard G, Stevens HP, Munro CS, Leigh IM. Connexin mutations associated with palmoplantar keratoderma and profound deafness in a single family. Eur J Hum Genet. 2000;8:469–72.

    PubMed  CAS  Google Scholar 

  37. Di WL, Rugg EL, Leigh IM, Kelsell DP. Multiple epidermal connexins are expressed in different keratinocyte subpopulations including connexin 31. J Invest Dermatol. 2001;117:958–64.

    Article  PubMed  CAS  Google Scholar 

  38. Wang CM, Lincoln J, Cook JE, Becker DL. Abnormal connexin expression underlies delayed wound healing in diabetic skin. Diabetes. 2007;56:2809–17.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Ege University Faculty of Medicine, Turkey for funding. This study is the master thesis of the first author. It was funded by Ege University Faculty of Medicine-Research

Funds Izmir, Turkiye (Project number 2009\139).

No commercial support was obtained for this study.

Conflict of Interest

Authors have no conflict of interest (financial or otherwise).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Özlem Yılmaz-Dilsiz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akarca, S.Ö., Yavaşoğlu, A., Ayşegül, U. et al. Investigation on the effects of experimental STZ-induced diabetic rat model on basal membrane structures and gap junctions of skin. Int J Diabetes Dev Ctries 32, 82–89 (2012). https://doi.org/10.1007/s13410-012-0070-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13410-012-0070-6

Keywords

Navigation