Skip to main content
Log in

The demand for quantitative techniques in biomedical image informatics

  • Review Article
  • Published:
Biomedical Engineering Letters Aims and scope Submit manuscript

Abstract

With recent technological advances, biomedical image informatics has become a quickly rising field. It focuses on the use of computational techniques to process and analyze biomedical images. Its goal is to obtain useful knowledge from complicated and heterogeneous images from different modalities for biomedical research. Although the advancement of imaging technologies has provided a data explosion, most biomedical images are only used by the researchers who create them. The lack of a canonical procedure, from data acquisition to data analysis, contributes to this issue. As the number of biomedical images increases, the demand for quantitative techniques rises. In order to increase awareness of the needs and importance of quantitative techniques for biomedical image informatics, this paper reviews several aspects including biomedical imaging, image repositories, and image processing. We explore the state of the art technology available in quantitative techniques for biomedical image informatics. The essential techniques for quantification, such as imaging devices, biomedical image management, and image processing, are further summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Peng H, Bateman A, Valencia A, Wren JD. Bioimage informatics: a new category in Bioinformatics. Bioinformatics. 2012; 28(8):10–7.

    Article  Google Scholar 

  2. Bui AA, Taira RK. Medical imaging informatics. Springer; 20–9.

  3. Editorial, The quest for quantitative microscopy. Nat Methods. 2012; 9(7):6–7.

    Google Scholar 

  4. Fass L. Imaging and cancer: A review. Mol Oncol. 2008; 2(2):115–52.

    Article  Google Scholar 

  5. Acharya R, Wasserman R, Stevens J, Hinojosa C. Biomedical imaging modalities: a tutorial. Comput Med Imaging Graph. 1995; 19(1):3–25.

    Article  Google Scholar 

  6. Dhawan AP, D’Alessandro B, Fu X. Optical imaging modalities for biomedical applications. IEEE Rev Biomed Eng. 2010; 3:69–92.

    Article  Google Scholar 

  7. Massoud TF, Gambhir SS. Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev. 2003; 17(5):545–80.

    Article  Google Scholar 

  8. Willmann JK, van Bruggen N, Dinkelborg LM, Gambhir SS. Molecular imaging in drug development. Nat Rev Drug Discov. 2008; 7(7):591–607.

    Article  Google Scholar 

  9. Gambhir SS. Just what is molecular imaging? MI Gateway. 2007; 1(1):1–2.

    MathSciNet  Google Scholar 

  10. Adanja I, Debeir O, Mégalizzi V, Kiss R, Warzée N, Decaestecker C. Automated tracking of unmarked cells migrating in three-dimensional matrices applied to anti-cancer drug screening. Exp Cell Res. 2010; 316(2):181–93.

    Article  Google Scholar 

  11. Conway JRW, Carragher NO, Timpson P. Developments in preclinical cancer imaging: innovating the discovery of therapeutics. Nat Rev Cancer. 2014; 14(5):314–28.

    Article  Google Scholar 

  12. Qiu Y, Chen Y, Zhang GGZ, Liu L, Porter W. Developing solid oral dosage forms: pharmaceutical theory & practice. Academic Press, 20–9.

  13. Chen X, Zheng B, Liuc H. Optical and digital microscopic imaging techniques and applications in pathology. Anal Cell Pathol (Amst). 2011; 34(1–2):5–18.

    Article  Google Scholar 

  14. Zhang S, Qian X, Gupta A, Martone ME. A practical approach for microscopy imaging data management (MIDM) in neuroscience. Conf Proc Int Conf Sci Stat Database Manag. 2003; doi: 10.1109/SSDM.2003.1214986.

    Google Scholar 

  15. Chen Y, Liang CP, Liu Y, Fischer AH, Parwani AV, Pantanowitz L. Review of advanced imaging techniques. J Pathol Inform. 2012; 3–22.

    Google Scholar 

  16. Kasper R, Huang B. SnapShot: Light Microscopy. Cell. 2011; 147(5):11–8.

    Article  Google Scholar 

  17. Toomre D, Bewersdorf J. A new wave of cellular imaging. Annu Rev Cell Dev Biol. 2010; 26:285–314.

    Article  Google Scholar 

  18. Gudise S, Figueroa RA, Lindberg R, Larsson V, Hallberg E. Samp1 is functionally associated with the LINC complex and A-type lamina networks. J Cell Sci. 2011; 124(12):2077–85.

    Article  Google Scholar 

  19. Schelhaas M, Ewers H, Rajamäki ML, Day PM, Schiller JT, Helenius A. Human papillomavirus type 16 entry: retrograde cell surface transport along actin-rich protrusions. PLoS Pathog. 2008; 4(9):e1000–48.

    Google Scholar 

  20. Capalbo G, Mueller-Kuller T, Koschmieder S, Klein HU, Ottmann OG, Hoelzer D, Scheuring UJ. Endoplasmic reticulum protein GliPR1 regulates G protein signaling and the cell cycle and is overexpressed in AML. Oncol Rep. 2013; 30(5):2254–62.

    Google Scholar 

  21. Tian L, Yang Y, Wysocki LM, Arnold AC, Hu A, Ravichandran B, Sternson SM, Looger LL, Lavis LD. Selective esterase–ester pair for targeting small molecules with cellular specificity. Proc Natl Acad Sci. 2012; 109(13):4756–61.

    Article  Google Scholar 

  22. Makino S, Tampo H. Optical coherence tomography imaging of choroidal abnormalities in neurofibromatosis type 1. Case Rep Ophthalmol Med. 2013; doi: 10.1155/2013/292981.

    Google Scholar 

  23. Swedlow JR. Finding an image in a haystack: the case for public image repositories. Nat Cell Biol. 2011; 13(3):1–3.

    Article  Google Scholar 

  24. Shiraishi J, Katsuragawa S, Ikezoe J, Matsumoto T, Kobayashi T, Komatsu K, Matsui M, Fujita H, Kodera Y, Doi K. Development of a digital image database for chest radiographs with and without a lung nodule: receiver operating characteristic analysis of radiologists’ detection of pulmonary nodules. AJR Am J Roentgenol. 2000; 174(1):71–4.

    Article  Google Scholar 

  25. van Ginneken B, Stegmann MB, Loog M. Segmentation of anatomical structures in chest radiographs using supervised methods: a comparative study on a public database. Med Image Anal. 2006; 10(1):19–40.

    Article  Google Scholar 

  26. Orloff DN, Iwasa JH, Martone ME, Ellisman MH, Kane CM. The cell: an image library-CCDB: a curated repository of microscopy data. Nucleic Acids Res. 2013; 41(Database issue):1241–50.

    Article  Google Scholar 

  27. Uhlen M, Oksvold P, Fagerberg L, Lundberg E, Jonasson K, Forsberg M, Zwahlen M, Kampf C, Wester K, Hober S, Wernerus H, Björling L, Ponten F. Towards a knowledge-based human protein atlas. Nat Biotechnol. 2010; 28(12):1248–50.

    Article  Google Scholar 

  28. Allen Brain Atlas. http://www.brain-map.org. Accessed 15 Dec 2014.

  29. Richardson L, Venkataraman S, Stevenson P, Yang Y, Moss J, Graham L, Burton N, Hill B, Rao J, Baldock RA, Armit C. EMAGE mouse embryo spatial gene expression database: (2014 update). Nucleic Acids Res. 2014; 42(1):835–844.

    Article  Google Scholar 

  30. WormAtlas. http://www.wormatlas.org. Accessed 15 Dec 2014.

  31. Sprenger J, Lynn Fink J, Karunaratne S, Hanson K, Hamilton NA, Teasdale RD. LOCATE: a mammalian protein subcellular localization database. Nucleic Acids Res. 2008; 36(Database issue):230–3.

    Article  Google Scholar 

  32. Eliceiri KW, Berthold MR, Goldberg IG, Ibáñez L, Manjunath BS, Martone ME, Murphy RF, Peng H, Plant AL, Roysam B, Stuurman N, Swedlow JR, Tomancak P, Carpenter AE. Biological imaging software tools. Nat Methods. 2012; 9(7), 697–710.

    Article  Google Scholar 

  33. Swedlow JR, Goldberg I, Brauner E, Sorger PK. Informatics and quantitative analysis in biological imaging. Science. 2003; 300(5616):100–2.

    Article  Google Scholar 

  34. Allan C, Burel JM, Moore J, Blackburn C, Linkert M, Loynton S, Macdonald D, Moore WJ, Neves C, Patterson A, Porter M, Tarkowska A, Loranger B, Avondo J, Lagerstedt I, Lianas L, Leo S, Hands K, Hay RT, Patwardhan A, Best C, Kleywegt GJ, Zanetti G, Swedlow JR. OMERO: flexible, model-driven data management for experimental biology. Nat Methods. 2012; 9(3):245–53.

    Article  Google Scholar 

  35. Kvilekval K, Fedorov D, Obara B, Singh A, Manjunath BS. Bisque: a platform for bioimage analysis and management. Bioinformatics. 2010; 26(4):544–52.

    Article  Google Scholar 

  36. Paranjape RB. Fundamental enhancement techniques. In: Isaac NB, editor. Handbook of medical imaging. Academic Press: Inc; 2000; 3–18.

    Chapter  Google Scholar 

  37. Gravel P, Beaudoin G, De Guise JA. A method for modeling noise in medical images. IEEE Trans Med Imaging. 2004; 23(10): 1221–32.

    Article  Google Scholar 

  38. Sijbers J. Signal and noise estimation from magnetic resonance images. Ph.D. thesis; University of Antwerp; Antwerp, Belgium; 19–8.

  39. Wallace W, Schaefer LH, Swedlow JR. Introduction to deconvolution. http://www.olympusmicro.com/primer/digitalimaging/deconvolution/deconintro.html. Accessed 15 Dec 2014.

    Google Scholar 

  40. Markham J, Conchello JA. Fast maximum-likelihood imagerestoration algorithms for three-dimensional fluorescence microscopy. J Opt Soc Am A Opt Image Sci Vis. 2001; 18(5): 1062–71.

    Article  Google Scholar 

  41. Sarder P, Nehorai A. Deconvolution methods for 3-D fluorescence microscopy images. IEEE Signal Proc Mag. 2006; 23(3):32–45.

    Article  Google Scholar 

  42. Verveer PJ, Gemkow MJ, Jovin TM. A comparison of image restoration approaches applied to three-dimensional confocal and wide-field fluorescence microscopy. J Microsc. 1999; 193(1):50–61.

    Article  Google Scholar 

  43. Rastgarpour M, Shanbehzadeh J. The status quo of artificial intelligence methods in automatic medical image segmentation. Int J Comput Theory Eng. 2013; 5(1):5–8.

    Article  Google Scholar 

  44. Ma Z, Tavares JM, Jorge RN, Mascarenhas T. A review of algorithms for medical image segmentation and their applications to the female pelvic cavity. Comput Methods Biomech Biomed Eng. 2010; 13(2):235–46.

    Article  Google Scholar 

  45. Withey DJ, Koels ZJ. Medical image segmentation: methods and available software. Int Conf on Fun Biomed Img Noninv Fun Src Im Br Heart, 2007. 140–3.

    Google Scholar 

  46. Handels H, Deserno TM, Meinzer HP, Tolxdorff T. Image analysis and modeling in medical image computing: recent developments and advances. Methods Inf Med. 2012; 51(5):395–7.

    Google Scholar 

  47. Wesarg S, Kirschner M, Becker M, Erdt M, Kafchitsas K, Khan MF. Dual-energy CT-based assessment of the trabecular bone in vertebrae. Methods Inf Med. 2012; 51(5):398–405.

    Article  Google Scholar 

  48. Hodge AC, Fenster A, Downey DB, Ladak HM. Prostate boundary segmentation from ultrasound images using 2D active shape models: Optimisation and extension to 3D. Comput Methods Programs Biomed. 2006; 84(2–3):99–113.

    Article  Google Scholar 

  49. Kovacevic J, Rohde GK. Overview of image analysis tools and tasks for microscopy. In: Rittscher J, Machiraju R, Wong STC, editors. Microscopic image analysis for life science applications. Norwood MA: Artech House; 2008; 49–83.

    Google Scholar 

  50. Chen X, Zhou X, Wong STC. Automated segmentation, classification, and tracking of cancer cell nuclei in time-lapse microscopy. IEEE Trans Biomed Eng. 2006; 53(4):762–6.

    Article  Google Scholar 

  51. Srinivasa G, Fickus MC, Guo Y, Linstedt AD, Kovacevic J. Active mask segmentation of fluorescence microscope images. IEEE Trans Image Process. 2009; 18(8):1817–29.

    Article  MathSciNet  Google Scholar 

  52. Jones TR, Carpenter AE, Golland P. Voronoi-based segmentation of cells on image manifolds. In: Liu Y, Jiang T, Zhang C, editors. Computer vision for biomedical image applications. Berlin: Springer; 2005; 535–43.

    Chapter  Google Scholar 

  53. Oliveira FPM, Tavares JMRS. Medical image registration: a review. Comput Methods Biomech Biomed Eng. 2014; 17(2): 73–93.

    Article  Google Scholar 

  54. Maintz JB, Viergever MA. A survey of medical image registration. Med Image Anal. 1998; 2(1):1–36.

    Article  Google Scholar 

  55. Staring M, van der Heide UA, Klein S, Viergever MA, Pluim JP. Registration of cervical MRI using multifeature mutual information. IEEE Trans Med Imaging. 2009; 28(9):1412–21.

    Article  Google Scholar 

  56. Jaffray D, Kupelian P, Djemil T, Macklis RM. Review of imageguided radiation therapy. Expert Rev Anticancer Ther. 2007; 7(1):89–103.

    Article  Google Scholar 

  57. Peters TM, Cleary K. Image guided interventions: technology and applications. New York: Springer; 20–8.

  58. Huang X, Ren J, Guiraudon G, Boughner D, Peters TM. Rapid dynamic image registration of the beating heart for diagnosis and surgical navigation. IEEE Trans Med Imaging. 2009; 28(11):1802–14.

    Article  Google Scholar 

  59. Gooya A, Biros G, Davatzikos C. Deformable registration of glioma images using em algorithm and diffusion reaction modeling. IEEE Trans Med Imaging. 2011; 30(2):375–90.

    Article  Google Scholar 

  60. Wilson CA, Theriot JA. A correlation-based approach to calculate rotation and translation of moving cells. IEEE Trans Image Process. 2006; 15(7):1939–51.

    Article  Google Scholar 

  61. Ruiz A, Ujaldon M, Cooper L, Huang K. Non-rigid registration for large sets of microscopic images on graphics processors. J Signal Process Syst. 2009; 55(1–3):229–50.

    Article  Google Scholar 

  62. Yang S, Kohler D, Teller K, Cremer T, Le Baccon P, Heard E, Eils R, Rohr K. Nonrigid registration of 3-D multichannel microscopy images of cell nuclei. IEEE Trans Image Process. 2008; 17(4):493–9.

    Article  MathSciNet  Google Scholar 

  63. Rankov V, Locke RJ, Edens RJ, Barber PR, Vojnovic B. An algorithm for image stitching and blending. In: Biomedical optics 2005. Int Soc Opt Photonics. 2005; 190–9.

    Google Scholar 

  64. Saalfeld S, Cardona A, Hartenstein V, Tomanèák P. As-rigid-aspossible mosaicking and serial section registration of large ssTEM datasets. Bioinformatics. 2010; 26(12):i57–63.

    Article  Google Scholar 

  65. McInerney T, Terzopoulos D. Deformable models in medical image analysis: a survey. Med Image Anal. 1996; 1(2):91–108.

    Article  Google Scholar 

  66. Declerc J, Feldmar J, Ayache N. Definition of a fourdimensional continuous planispheric transformation for the tracking and the analysis of left-ventricle motion. Med Image Anal. 1998; 2(2):197–213.

    Article  Google Scholar 

  67. Schweikard A, Shiomi H, Adler J. Respiration tracking in radiosurgery. Med Phys. 2004; 31(10):2738–41.

    Article  Google Scholar 

  68. Schweikard A, Shiomi H, Adler J. Respiration tracking in radiosurgery without fiducials. Int J Med Robot. 2005; 1(2):19–27.

    Article  Google Scholar 

  69. Meijering E, Smal I, Danuser G. Tracking in molecular bioimaging. IEEE Signal Process Mag. 2006; 23(3):46–53.

    Article  Google Scholar 

  70. Li K, Chen M, Kanade T. Cell population tracking and lineage construction with spatiotemporal context. Med Image Comput Comput Assist Interv. 2007; 10(2):295–302.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myoung-Hee Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jang, HY., Kim, HR., Kang, MS. et al. The demand for quantitative techniques in biomedical image informatics. Biomed. Eng. Lett. 4, 319–327 (2014). https://doi.org/10.1007/s13534-014-0169-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13534-014-0169-4

Keywords

Navigation