Skip to main content
Log in

Identification of aquaporins and deciphering their role under salinity stress in pomegranate (Punica granatum)

  • Original Article
  • Published:
Journal of Plant Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Aquaporins (AQPs), pore-forming proteins, are known to involve in the transport of water and many other small solutes, and play a diverse role in physiological processes. In this study, 38 AQPs were identified from pomegranate (Punica granatum) genome based on the phylogenetic distribution and homology with known AQPs from Arabidopsis thaliana and Oryza sativa. The pomegranate AQPs were further classified into five subgroup representing 12 plasma membrane intrinsic proteins (PIPs), 8 Nod26-like intrinsic proteins (NIPs), 14 tonoplast intrinsic proteins (TIPs), three small and basic intrinsic proteins (SIPs) and one uncategorized intrinsic protein (XIPs). Extensive computational analysis was performed to understand the pore morphology, exon–intron structure, and subcellular localization of the AQPs. The identified AQPs were further confirmed for the conserved NPA motifs, ar/R selectivity filters, and Froger’s residues. Analysis of the available transcriptomic data revealed tissue specific expression of different aquaporins, for instance, under salinity stress PgNIP6-1 showed increased expression in root. The co-expression has been observed among PgTIP3-1, PgTIP1-4, PgTIP1-8, PgTIP1-1, PgSIP1-1, PgPIP2-4, PgPIP1-3, and PgPIP1-2. Moreover, PgTIP3-1 showed a negative correlation with remaining seven AQPs. Further, the expression analysis of PgNIP6-1, PgTIP3-1 and PgNIP3-1 using quantitative real-time PCR showed increased transcript level of these genes under salinity stress suggesting their key role in stress related mechanism. The information presented here will provide insights into AQPs role in development and stress tolerance in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as all new created data is already contained within this article and the supplementary material of this article.

Code availability

Not Applicable.

Abbreviations

AQPs:

Aquaporins

PIPs:

Plasma membrane intrinsic proteins

SIPs:

Small and basic intrinsic proteins

NIPs:

Nod26-like intrinsic proteins\

TIPs:

Tonoplast intrinsic proteins

XIPs:

Uncategorized intrinsic proteins

RPKM:

Reads Per Kilobase of the transcript per Million mapped reads

qRT-PCR:

Quantitative reverse-transcription PCR

References

  • Adams LS et al (2006) Pomegranate juice, total pomegranate ellagitannins, and punicalagin suppress inflammatory cell signaling in colon cancer cells. J Agric Food Chem 54(3):980–985

    CAS  PubMed  Google Scholar 

  • Afzal Z, Howton T, Sun Y, Mukhtar MS (2016) The roles of aquaporins in plant stress responses. J Dev Biol 4(1):9

    PubMed Central  Google Scholar 

  • Armenteros JJA et al (2019) Detecting sequence signals in targeting peptides using deep learning. Life Sci Alliance 2(5):e201900429

    Google Scholar 

  • Arvidsson S, Kwasniewski M, Riaño-Pachón DM, Mueller-Roeber B (2008) QuantPrime–a flexible tool for reliable high-throughput primer design for quantitative PCR. BMC Bioinform 9(1):465

    Google Scholar 

  • Azaizeh H, Steudle E (1991) Effects of salinity on water transport of excised maize (Zea mays L.) roots. Plant Physiol 97(3):1136–1145

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bhardwaj R et al (2013) Aquaporins: role under salt stress in plants Ecophysiology and responses of plants under salt stress. Springer, Berlin, pp 213–248

    Google Scholar 

  • Bienert GP et al (2008) A subgroup of plant aquaporins facilitate the bi-directional diffusion of As (OH) 3 and Sb (OH) 3 across membranes. BMC Biol 6(1):26

    PubMed  PubMed Central  Google Scholar 

  • Chaumont F, Barrieu F, Jung R, Chrispeels MJ (2000) Plasma membrane intrinsic proteins from maize cluster in two sequence subgroups with differential aquaporin activity. Plant Physiol 122(4):1025–1034

    CAS  PubMed  PubMed Central  Google Scholar 

  • del Martínez-Ballesta M, Silva C, López-Berenguer C, Cabañero F, Carvajal M (2006) Plant aquaporins: new perspectives on water and nutrient uptake in saline environment. Plant Biol 8(5):535–546

    PubMed  Google Scholar 

  • Deshmukh R, Bélanger RRJFE (2016) Molecular evolution of aquaporins and silicon influx in plants. Funct Ecol 30(8):1277–1285

    Google Scholar 

  • Deshmukh RK et al (2013) Identification and functional characterization of silicon transporters in soybean using comparative genomics of major intrinsic proteins in Arabidopsis and rice. Plant Mol Biol 83(4–5):303–315. https://doi.org/10.1007/s11103-013-0087-3

    Article  CAS  PubMed  Google Scholar 

  • Deshmukh RK et al (2015a) A precise spacing between the NPA domains of aquaporins is essential for silicon permeability in plants. Plant J Cell Mol Biol 83(3):489–500. https://doi.org/10.1111/tpj.12904

    Article  CAS  Google Scholar 

  • Deshmukh RK et al (2015b) A precise spacing between the NPA domains of aquaporins is essential for silicon permeability in plants. Plant J 83(3):489–500. https://doi.org/10.1111/tpj.12904

    Article  CAS  PubMed  Google Scholar 

  • Deshmukh RK, Nguyen HT, Belanger RR (2017) Editorial: aquaporins: dynamic role and regulation. Front Plant Sci 8:1420. https://doi.org/10.3389/fpls.2017.01420

    Article  PubMed  PubMed Central  Google Scholar 

  • Gil MI, Tomás-Barberán FA, Hess-Pierce B, Holcroft DM, Kader AAJJoA, Chemistry F (2000) Antioxidant activity of pomegranate juice and its relationship with phenolic composition and processing. J. Agric. Food Chem. 48(10):4581–4589

    CAS  PubMed  Google Scholar 

  • Greenway H, Munns R (1980) Mechanisms of salt tolerance in nonhalophytes. Annu Rev Plant Physiol 31(1):149–190

    CAS  Google Scholar 

  • Gupta AB, Sankararamakrishnan RJBpb (2009) Genome-wide analysis of major intrinsic proteins in the tree plant Populus trichocarpa: characterization of XIP subfamily of aquaporins from evolutionary perspective. BMC plant biology 9(1):134

    PubMed  PubMed Central  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. In: Nucleic acids symposium series. vol 41. [London]: Information Retrieval Ltd., c1979-c2000., p 95–98

  • Hernandez-Sanchez IE, Maruri-Lopez I, Molphe-Balch EP, Becerra-Flora A, Jaimes-Miranda F, Jimenez-Bremont JF (2019) Evidence for in vivo interactions between dehydrins and the aquaporin AtPIP2B. Biochem Biophys Res Commun. https://doi.org/10.1016/j.bbrc.2019.01.095

    Article  PubMed  Google Scholar 

  • Hirokawa T, Boon-Chieng S, Mitaku S (1998) SOSUI: classification and secondary structure prediction system for membrane proteins. Bioinformatics (oxford, England) 14(4):378–379

    CAS  Google Scholar 

  • Horie T et al (2011) Mechanisms of water transport mediated by PIP aquaporins and their regulation via phosphorylation events under salinity stress in barley roots. Plant Cell Physiol 52(4):663–675. https://doi.org/10.1093/pcp/pcr027

    Article  CAS  PubMed  Google Scholar 

  • Horton P, Park K-J, Obayashi T, Nakai K Protein subcellular localization prediction with WoLF PSORT. In: Proceedings of the 4th Asia-Pacific bioinformatics conference, 2006. World Scientific, p 39–48

  • Hove RM, Ziemann M, Bhave M (2015) Identification and expression analysis of the barley (Hordeum vulgare L.) aquaporin gene family. PLoS ONE 10(6):e0128025

    PubMed  PubMed Central  Google Scholar 

  • Howe EA, Sinha R, Schlauch D, Quackenbush J (2011) RNA-Seq analysis in MeV. Bioinformatics 27(22):3209–3210

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hu B, Jin J, Guo A-Y, Zhang H, Luo J, Gao G (2014) GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics 31(8):1296–1297

    PubMed  PubMed Central  Google Scholar 

  • Johanson U et al (2001) The complete set of genes encoding major intrinsic proteins in Arabidopsis provides a framework for a new nomenclature for major intrinsic proteins in plants. Plant Physiol 126(4):1358–1369

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kaldenhoff R, Fischer MJAP (2006) Aquaporins in plants. Acta Physiologica 187(1–2):169–176

    CAS  PubMed  Google Scholar 

  • Karimi HR, Hasanpour Z (2014) Effects of salinity and water stress on growth and macro nutrients concentration of pomegranate (Punica granatum L.). J Plant Nutrition 37(12):1937–1951

    CAS  Google Scholar 

  • Katsuhara M, Sasano S, Horie T, Matsumoto T, Rhee J, Shibasaka M (2014) Functional and molecular characteristics of rice and barley NIP aquaporins transporting water, hydrogen peroxide and arsenite. Plant Biotechnology 31(3):213–219

    CAS  Google Scholar 

  • Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 10(6):845

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kozlowski LP (2016) IPC – Isoelectric point calculator. Biol Direct 11(1):55. https://doi.org/10.1186/s13062-016-0159-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35(6):1547–1549

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumawat S et al (2021) Understanding aquaporin transport system, silicon and other metalloids uptake and deposition in bottle gourd (Lagenaria siceraria). J Hazard Mater 409:124598

    CAS  PubMed  Google Scholar 

  • Li G, Santoni V, Maurel CJBeBA-GS (2014) Plant aquaporins: roles in plant physiology. Biochimica et Biophysica Acta 1840(5):1574–1582

    Google Scholar 

  • López-Berenguer C, Martínez-Ballesta MC, García-Viguera C, Carvajal M (2008) Leaf water balance mediated by aquaporins under salt stress and associated glucosinolate synthesis in broccoli. Plant Sci 174(3):321–328

    Google Scholar 

  • Lu S et al (2020) CDD/SPARCLE: the conserved domain database in 2020. Nucleic Acids Res 48(D1):D265–D268

    CAS  PubMed  Google Scholar 

  • Ma JF, Goto S, Tamai K, Ichii M (2001) Role of root hairs and lateral roots in silicon uptake by rice. Plant Physiol 127(4):1773–1780

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mandlik R et al (2020) Significance of silicon uptake, transport, and deposition in plants. J Exp Bot 71(21):6703–6718

    CAS  PubMed  Google Scholar 

  • Maurel C, Verdoucq L, Luu D-T, Santoni V (2008) Plant aquaporins: membrane channels with multiple integrated functions. Annu Rev Plant Biol 59:595–624

    CAS  PubMed  Google Scholar 

  • Maurel C, Boursiac Y, Luu D-T, Santoni V, Shahzad Z, Verdoucq LJPr (2015) Aquaporins in plants. Physiol Rev 95(4):1321–1358

    CAS  PubMed  Google Scholar 

  • Min X et al (2019) Genome-wide identification and characterization of the aquaporin gene family in Medicago truncatula. J Plant Biochem Biotechnol 28(3):320–335

    CAS  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    CAS  PubMed  Google Scholar 

  • Nugent T, Jones DT (2009) Transmembrane protein topology prediction using support vector machines. BMC Bioinform 10:159. https://doi.org/10.1186/1471-2105-10-159

    Article  CAS  Google Scholar 

  • Omasits U, Ahrens CH, Müller S, Wollscheid B (2014) Protter: interactive protein feature visualization and integration with experimental proteomic data. Bioinformatics 30(6):884–886

    CAS  PubMed  Google Scholar 

  • Ortega L, Taleisnik E (2003) Elongation growth in leaf blades ofChloris gayana under saline conditions. J Plant Physiol 160(5):517–522

    CAS  PubMed  Google Scholar 

  • Petersen TN, Brunak S, von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8(10):785–786. https://doi.org/10.1038/nmeth.1701

    Article  CAS  PubMed  Google Scholar 

  • Pommerrenig B, Diehn TA, Bienert GP (2015) Metalloido-porins: essentiality of Nodulin 26-like intrinsic proteins in metalloid transport. Plant Sci 238:212–227

    CAS  PubMed  Google Scholar 

  • Quigley F, Rosenberg JM, Shachar-Hill Y, Bohnert HJ (2001) From genome to function: the Arabidopsis aquaporins. Genome Biology 3(1):research0001. 1

  • Sakurai J, Ishikawa F, Yamaguchi T, Uemura M, Maeshima M (2005) Identification of 33 rice aquaporin genes and analysis of their expression and function. Plant Cell Physiol 46(9):1568–1577

    CAS  PubMed  Google Scholar 

  • Sehnal D et al (2013) MOLE 2.0: advanced approach for analysis of biomacromolecular channels. J Cheminformatics 5(1):39

    CAS  Google Scholar 

  • Shannon P et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shivaraj SM, Deshmukh R, Bhat JA, Sonah H, Belanger RR (2017a) Understanding aquaporin transport system in eelgrass (Zostera marina L.), an aquatic plant species. Front Plant Sci 8:1334. https://doi.org/10.3389/fpls.2017.01334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shivaraj SM, Deshmukh RK, Rai R, Bélanger R, Agrawal PK, Dash PK (2017b) Genome-wide identification, characterization, and expression profile of aquaporin gene family in flax (Linum usitatissimum). Sci Rep 7(1):46137. https://doi.org/10.1038/srep46137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sonah H, Deshmukh RK, Labbé C, Bélanger RR (2017) Analysis of aquaporins in Brassicaceae species reveals high-level of conservation and dynamic role against biotic and abiotic stress in canola. Sci Rep 7(1):1–17

    CAS  Google Scholar 

  • Srivastava AK, Suprasanna P, Srivastava S, D’Souza SF (2010) Thiourea mediated regulation in the expression profile of aquaporins and its impact on water homeostasis under salinity stress in Brassica juncea roots. Plant Sci 178(6):517–522. https://doi.org/10.1016/j.plantsci.2010.02.015

    Article  CAS  Google Scholar 

  • Sudhakaran S et al (2021) Significance of solute specificity, expression, and gating mechanism of tonoplast intrinsic protein during development and stress response in plants. Physiol Plant 172(1):258–274

    CAS  PubMed  Google Scholar 

  • Tanaka M, Wallace IS, Takano J, Roberts DM, Fujiwara T (2008) NIP6; 1 is a boric acid channel for preferential transport of boron to growing shoot tissues in Arabidopsis. Plant Cell 20(10):2860–2875

    CAS  PubMed  PubMed Central  Google Scholar 

  • Törnroth-Horsefield S et al (2006) Structural mechanism of plant aquaporin gating. Nature 439(7077):688

    PubMed  Google Scholar 

  • Tzfadia O, Diels T, De Meyer S, Vandepoele K, Aharoni A, Van de Peer Y (2016a) CoExpNetViz: comparative co-expression networks construction and visualization tool. Front Plant Sci 6:1194

    PubMed  PubMed Central  Google Scholar 

  • Tzfadia O, Diels T, De Meyer S, Vandepoele K, Aharoni A, Van de Peer YJFips (2016b) CoExpNetViz: comparative co-expression networks construction and visualization tool. Front Plant Sci 6:1194

    PubMed  PubMed Central  Google Scholar 

  • Wallace IS, Roberts DM (2005) Distinct transport selectivity of two structural subclasses of the nodulin-like intrinsic protein family of plant aquaglyceroporin channels. Biochemistry 44(51):16826–16834. https://doi.org/10.1021/bi0511888

    Article  CAS  PubMed  Google Scholar 

  • Xu W et al (2015) Arabidopsis NIP3; 1 plays an important role in arsenic uptake and root-to-shoot translocation under arsenite stress conditions. Mol Plant 8(5):722–733

    CAS  PubMed  Google Scholar 

  • Yamaji N, Ma JF (2009) A transporter at the node responsible for intervascular transfer of silicon in rice. Plant Cell 21(9):2878–2883

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu CS, Lin CJ, Hwang JK (2004) Predicting subcellular localization of proteins for Gram-negative bacteria by support vector machines based on n-peptide compositions. Protein Sci 13(5):1402–1406

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zamani Z, Adabi M, Khadivi-Khub AJPs (2013) Comparative analysis of genetic structure and variability in wild and cultivated pomegranates as revealed by morphological variables and molecular markers. Plant Syst Evol 299(10):1967–1980

    CAS  Google Scholar 

  • Zhang Y, Wang Z, Chai T, Wen Z, Zhang H (2008) Indian mustard aquaporin improves drought and heavy-metal resistance in tobacco. Mol Biotechnol 40(3):280–292

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors are also thankful to the Department of Biotechnology (DBT), India for Ramalingaswami fellowship to RD and HS.

Funding

We thank the Department of Biotechnology, Government of India for Ramalingaswami Fellowship, and Science and Engineering Research Board (SERB), Department of Science and Technology, Government of India for funding support (CRG/2019/006599) to RD and HS.

Author information

Authors and Affiliations

Authors

Contributions

SK and BA compiled the data, performed analysis. SK performed transcriptome data analysis and qPCR experiment. SK, BA, NR, RM and AM contributed in data analysis and first draft of the MS. SMS, RD and HS edited and finalized the draft. RD and HS conceptualized the study, drew the conclusions.

Corresponding author

Correspondence to Rupesh Deshmukh.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 162 KB)

Supplementary Table 1 Details of Primers used for Quantitative Real Time PCR (XLSX 9 KB)

13562_2021_738_MOESM3_ESM.xlsx

Supplementary Table 2 Details of Blastp results performed using BioEdit showing highest bit score against respective queries from Arabidopsis thaliana and Oryza sativa (XLSX 10 KB)

13562_2021_738_MOESM4_ESM.xlsx

Supplementary Table 3 Conserved domain analysis of identified Pomegranate aquaporins using NCBI conserved Domain Search (XLSX 10 KB)

13562_2021_738_MOESM5_ESM.xlsx

Supplementary Table 4 Biosequence analysis of Pomegranate aquaporins using profile hidden Markov Models (HMMER) (https://www.ebi.ac.uk/Tools/hmmer/) (XLSX 10 KB)

13562_2021_738_MOESM6_ESM.xlsx

Supplementary Table 5 Transmembrane domain identified by using TMHMM and SOSUI servers in Pomegranate aquaporins (XLSX 10 KB)

13562_2021_738_MOESM7_ESM.xlsx

Supplementary Table 6 Details of the sub-cellular location, molecular weight (Mw) and isoelectric point (pI) predicted for aquaporins identified in Punica granatum genome (XLSX 10 KB)

13562_2021_738_MOESM8_ESM.xlsx

Supplementary Table 7 Details of Asn-Pro-Ala (NPA) domains, aromatic/arginine (Ar/R) filters, Froger’s residues and Mitani’s residues located in 38 aquaporins identified in Punica granatum genome (XLSX 12 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumawat, S., Aggarwal, B., Rana, N. et al. Identification of aquaporins and deciphering their role under salinity stress in pomegranate (Punica granatum). J. Plant Biochem. Biotechnol. 30, 930–942 (2021). https://doi.org/10.1007/s13562-021-00738-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13562-021-00738-1

Keywords

Navigation