Skip to main content
Log in

A novel approach for shape-based object recognition with curvelet transform

  • Regular Paper
  • Published:
International Journal of Multimedia Information Retrieval Aims and scope Submit manuscript

Abstract

In this work, we revisit multi-resolution analysis (MRA) methods for object recognition. We find an optimal sparse representation of an image using a second-generation Fast Discrete Curvelet Transform (FDCT) and present a novel curvelet approach based on thin plate splines (TPS). Measurement of local deformation at each FDCT coefficient is detailed. Specific deformations in the TPS-based curve-let transformation are identified by minimization (Curvature) of total bending energy. Shape toning is processed through the Euclidean distance. Results of implementation of proposed descriptor for five standard databases are analyzed, while their comparison with other revealed relative efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Zhang D, Lu G (2004) Review of shape representation and description techniques. Pattern Recogn 37(1):1–19

    Article  Google Scholar 

  2. Pitas I (2000) Digital image processing, algorithms and application. Wiley, New York

    MATH  Google Scholar 

  3. Nixon MS, Aguado AS (2002) Feature extraction and image processing, 1st edn. Newnes Publishers, Oxford, pp 247–287

    Book  Google Scholar 

  4. Starck JL, Elad M, Donoho D (2004) Redundant multiscale transforms and their application for morphological component separation. Adv Imaging Electron Phys 132:287–348

    Article  Google Scholar 

  5. Mojsilovic A, Popovic M, Markovic S, Krstic M (1998) Characterization of visually similar diffuse diseases from Bscan liver images using nonseparable wavelet transform. IEEE Trans Med Imaging 17(4):541–549

    Article  Google Scholar 

  6. Alzu’bi S, Amira A (2010) 3D medical volume segmentation using hybrid multiresolution statistical approaches. Adv Artif Intell 2010:1–15

    Article  Google Scholar 

  7. Mulcahy C (1997) Image compression using the Haar wavelet transform. Spelman Sci Math J 1:22–31

    Google Scholar 

  8. Fourati W, Kammoun F, Bouhlel MS (2005) Medical image denoising using wavelet thresholding. J Test Eval 33(5):364–369

    Google Scholar 

  9. Kara B, Watsuji N (2003) Using wavelets for texture classification. J WSEAS Trans Comput 2(4):920–924

  10. Chen GY, Bui TD, Krzyżak A (2009) Invariant pattern recognition using radon, dual-tree complex wavelet and Fourier transforms. Pattern Recogn 42(9):2013–2019

    Article  MATH  Google Scholar 

  11. Alina B, Ambar D (2013) Performance comparison of cosine, haar, walsh-hadamard, fourier and wavelet transform for shape based image retrieval using fuzzy similarity measure. Proc Technol 10:623–627

    Article  Google Scholar 

  12. Candès E, Demanet L (2005) The curvelet representation of wave propagators is optimally sparse. Commun Pure Appl Math 58(11):1472–1528

    Article  MathSciNet  MATH  Google Scholar 

  13. Candès E, Demanet L, Donoho D, Ying L (2006) Fast discrete curvelet transforms. Multiscale Model Simul 5(3):861–899

    Article  MathSciNet  MATH  Google Scholar 

  14. Jianwei M, Plonka G (2010) The curvelet transform. IEEE Signal Process Mag 27(2):118–133

    Article  Google Scholar 

  15. Arivazhagan S, Ganesan L, Kumar TGS (2006) Texture classification using curvelet statistical and co-occurrence features, pattern recognition. In: 18th international conference on ICPR 2006, vol 2, pp 938–941

  16. Qing-Wu L, Guo-Gao L (2007) eramic microscopic image processing based on fast discrete curvelet transform, Wavelet Analysis and Pattern Recognition. In: ICWAPR ’07. International Conference vol 1, pp 344–349

  17. Yungang Z, Lijin G, Wei G, Jun L (2010) ombining color quantization with curvelet transform for image retrieval, Artificial Intelligence and Computational Intelligence (AICI). In: International Conference on vol 1, pp 474–479

  18. Chi Z, Hongbin Z (2010) Identifying color image origin using curvelet transform, Image Processing (ICIP). In: 17th IEEE International Conference on, pp 2125–2128

  19. Prasad S, Kumar P, Tripathi RC (2011) Plant leaf species identification using Curvelet transform, Computer and Communication Technology (ICCCT). In: 2nd International Conference on, pp 646–652

  20. Minhas R, Mohammed AA, Wu QMJ, Sid-Ahmed MA (2011) A robust object detection approach using boosted anisotropic multiresolution analysis, Circuits and Systems (MWSCAS). In: 54th international midwest symposium on IEEE 2011, pp 1–4

  21. Esmaeili M, Rabbani H, Dehnavi AM, Dehghani A (2012) Automatic detection of exudates and optic disk in retinal images using curvelet transform. IET Image Proc 6(7):1005–1013

  22. Ezekiel S, Alford MG, Ferris D, Jones E, Bubalo A, Gorniak M, Blasch E (2013) Multi-scale decomposition tool for content based image retrieval, applied imagery pattern recognition workshop: sensing for control and augmentation. In: 2013 IEEE (AIPR), pp 1–5

  23. Bin H, Islam KK (2013) A comparative analysis of processing periods for strain images generated using 1D spline based approach and 2D thin plate smoothing spline method. In: International conference on informatics, electronics & vision (ICIEV), pp 1–6

  24. Candes EJ, Donoho DL (2000) Curvelets—A surprisingly effective non- adaptive representation for objects with edges. Vanderbilt University Press, Nashville

    Google Scholar 

  25. Bookstein FL (1991) Morphometric tools for landmark data: geomtery and biology. Cambridge University Press, Cambridge

  26. Zhang G, Ma ZM, Tong Q, He Y, Zhao T (2008) Shape feature extraction using fourier descriptors with brightness in content based medical image retrieval. In: International conference on intelligent information hiding and multimedia signal processing, pp 71–74

  27. Tiagrajah VJ, Razeen AASM (2011) An enhanced shape descriptor based on radial distances. In: IEEE international conference on signal and image processing applications, pp 472–477

  28. Sebastian P, Klein T, Kimia B (2004) Computationally efficient wavelet affine invariant functions for shape recognition. IEEE Trans Pattern Anal Mach Intell 26:550–571

    Article  Google Scholar 

  29. Whoi YSK (2000) A region-based shape descriptor using Zernike moments. Signal Process 16:95–102

    Google Scholar 

  30. Mokhtarian F, Abbasi F, Kittler J, Smeulders AWM, Jain R (1997) Efficient and robust retrieval by shape content through curvature scale space. Image Databases Multi Media Search 8:51–58

  31. Ghazal AE, Basir O, Belkasim S (2009) Farthest point distance: a new shape signature for Fourier descriptors. Sig Process Image Commun 24:572–586

    Article  Google Scholar 

  32. Ghazal AE, Basir O, Belkasim S (2012) Invariant curvature-based Fourier shape descriptors. J Visual Commun Image Represent 23:622–633

    Article  Google Scholar 

  33. Pedrosa Glauco V, Batista Marcos A, Barcelos Celia AZ (2013) Image feature descriptor based on shape salience points. Neuro Comput 23:156–163

    Google Scholar 

  34. Mani MR, Varma GPS, Potukuchi DM, Satyanarayana Ch (2015) A conformal mapping based shape signature for object recognition. In: Proceedings of the 15th international conference on applied computer science. Konya, pp 183–187

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ch. Satyanarayana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mani, M.R., Potukuchi, D.M. & Satyanarayana, C. A novel approach for shape-based object recognition with curvelet transform. Int J Multimed Info Retr 5, 219–228 (2016). https://doi.org/10.1007/s13735-016-0107-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13735-016-0107-6

Keywords

Navigation