Skip to main content
Log in

Generative adversarial networks: a survey on applications and challenges

  • Trends and Surveys
  • Published:
International Journal of Multimedia Information Retrieval Aims and scope Submit manuscript

Abstract

Deep neural networks have attained great success in handling high dimensional data, especially images. However, generating naturalistic images containing ginormous subjects for different tasks like image classification, segmentation, object detection, reconstruction, etc., is continued to be a difficult task. Generative modelling has the potential to learn any kind of data distribution in an unsupervised manner. Variational autoencoder (VAE), autoregressive models, and generative adversarial network (GAN) are the popular generative modelling approaches that generate data distributions. Among these, GANs have gained much attention from the research community in recent years in terms of generating quality images and data augmentation. In this context, we collected research articles that employed GANs for solving various tasks from popular databases and summarized them based on their application. The main objective of this article is to present the nuts and bolts of GANs, state-of-the-art related work and its applications, evaluation metrics, challenges involved in training GANs, and benchmark datasets that would benefit naive and enthusiastic researchers who are interested in working on GANs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. AbdAlmageed W, Wu Y, Rawls S, Harel S, Hassner T, Masi I, Choi J, Lekust J, Kim J, Natarajan P, et al. (2016) Face recognition using deep multi-pose representations. In: 2016 IEEE winter conference on applications of computer vision (WACV), IEEE, pp 1–9

  2. Ak KE, Lim JH, Tham JY, Kassim AA (2020) Semantically consistent text to fashion image synthesis with an enhanced attentional generative adversarial network. Pattern Recognit Lett 135:22–29

    Google Scholar 

  3. Antipov G, Baccouche M, Dugelay JL (2017) Face aging with conditional generative adversarial networks. In: 2017 IEEE international conference on image processing (ICIP), IEEE, pp 2089–2093

  4. Arjovsky M, Bottou L (2017) Towards principled methods for training generative adversarial networks. arXiv preprint arXiv:1701.04862

  5. Arjovsky M, Chintala S, Bottou L (2017) Wasserstein gan. arXiv preprint arXiv:1701.07875

  6. Bisneto TRV, de Carvalho Filho AO, Magalhães DMV (2020) Generative adversarial network and texture features applied to automatic glaucoma detection. Appl Soft Comput 90:106165

    Google Scholar 

  7. Blei DM, Ng AY, Jordan MI (2003) Latent dirichlet allocation. J Mach Learn Res 3:993–1022

    MATH  Google Scholar 

  8. Borji A (2019) Pros and cons of gan evaluation measures. Comput Vis Image Underst 179:41–65

    Google Scholar 

  9. Brock A, Lim T, Ritchie JM, Weston N (2016) Neural photo editing with introspective adversarial networks. arXiv preprint arXiv:1609.07093

  10. Cai Y, Wang X, Yu Z, Li F, Xu P, Li Y, Li L (2019) Dualattn-gan: text to image synthesis with dual attentional generative adversarial network. IEEE Access 7:183706–183716

    Google Scholar 

  11. Che T, Li Y, Jacob AP, Bengio Y, Li W (2016) Mode regularized generative adversarial networks. arXiv preprint arXiv:1612.02136

  12. Chen J, Wu Y, Jia C, Zheng H, Huang G (2019) Customizable text generation via conditional text generative adversarial network. Neurocomputing. https://doi.org/10.1016/j.neucom.2018.12.092

    Article  Google Scholar 

  13. Chen Q, Wu Q, Chen J, Wu Q, van den Hengel A, Tan M (2020) Scripted video generation with a bottom-up generative adversarial network. IEEE Trans Image Process 29:7454–7467

    Google Scholar 

  14. Chen W, Hu H (2020) Generative attention adversarial classification network for unsupervised domain adaptation. Pattern Recognit 107:107440

    Google Scholar 

  15. Choi Y, Choi M, Kim M, Ha JW, Kim S, Choo J (2018) Stargan: unified generative adversarial networks for multi-domain image-to-image translation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 8789–8797

  16. Chonwiharnphan P, Thienprapasith P, Chuangsuwanich E (2020) Generating realistic users using generative adversarial network with recommendation-based embedding. IEEE Access 8:41384–41393

    Google Scholar 

  17. Delannoy Q, Pham CH, Cazorla C, Tor-Díez C, Dollé G, Meunier H, Bednarek N, Fablet R, Passat N, Rousseau F (2020) Segsrgan: super-resolution and segmentation using generative adversarial networks-application to neonatal brain mri. Comput Biol Med 120:103755

    Google Scholar 

  18. Dolhansky B, Bitton J, Pflaum B, Lu J, Howes R, Wang M, Ferrer CC (2020) The deepfake detection challenge dataset. arXiv preprint arXiv:2006.07397

  19. Dong J, Yin R, Sun X, Li Q, Yang Y, Qin X (2018) Inpainting of remote sensing sst images with deep convolutional generative adversarial network. IEEE Geosci Remote Sens Lett 16(2):173–177

    Google Scholar 

  20. Feng J, Yu H, Wang L, Cao X, Zhang X, Jiao L (2019) Classification of hyperspectral images based on multiclass spatial-spectral generative adversarial networks. IEEE Trans Geosci Remote Sens 57(8):5329–5343

    Google Scholar 

  21. Gao Y, Liu Y, Wang Y, Shi Z, Yu J (2019) A universal intensity standardization method based on a many-to-one weak-paired cycle generative adversarial network for magnetic resonance images. IEEE Trans Med Imaging 38(9):2059–2069

    Google Scholar 

  22. Ghassemi N, Shoeibi A, Rouhani M (2020) Deep neural network with generative adversarial networks pre-training for brain tumor classification based on mr images. Biomed Signal Process Control 57:101678

    Google Scholar 

  23. Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2014) Generative adversarial nets. In: Advances in neural information processing systems, pp 2672–2680

  24. Grover A, Dhar M, Ermon S (2017) Flow-gan: Combining maximum likelihood and adversarial learning in generative models. arXiv preprint arXiv:1705.08868

  25. Guo C, Huang D, Zhang J, Xu J, Bai G, Dong N (2020) Early prediction for mode anomaly in generative adversarial network training: an empirical study. Inf Sci 534:117–138

    MathSciNet  Google Scholar 

  26. Hamada K, Tachibana K, Li T, Honda H, Uchida Y (2018) Full-body high-resolution anime generation with progressive structure-conditional generative adversarial networks. In: Proceedings of the European conference on computer vision (ECCV)

  27. Han L, Huang Y, Dou H, Wang S, Ahamad S, Luo H, Liu Q, Fan J, Zhang J (2020) Semi-supervised segmentation of lesion from breast ultrasound images with attentional generative adversarial network. Comput Methods Programs Biomed 189:105275

    Google Scholar 

  28. Han Z, Huang H, Huang T, Cao J (2019) Face merged generative adversarial network with tripartite adversaries. Neurocomputing 368:188–196

    Google Scholar 

  29. Harada S, Hayashi H, Uchida S (2019) Biosignal generation and latent variable analysis with recurrent generative adversarial networks. IEEE Access 7:144292–144302

    Google Scholar 

  30. Hayashi H, Abe K, Uchida S (2019) Glyphgan: style-consistent font generation based on generative adversarial networks. Knowl-Based Syst 186:104927

    Google Scholar 

  31. He J, Zheng J, Shen Y, Guo Y, Zhou H (2020a) Facial image synthesis and super-resolution with stacked generative adversarial network. Neurocomputing 402:359–365

    Google Scholar 

  32. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 770–778

  33. He R, Li X, Chen G, Chen G, Liu Y (2020b) Generative adversarial network-based semi-supervised learning for real-time risk warning of process industries. Expert Syst Appl 150:113244

    Google Scholar 

  34. He X, Fang L, Rabbani H, Chen X, Liu Z (2020c) Retinal optical coherence tomography image classification with label smoothing generative adversarial network. Neurocomputing 405:37–47

    Google Scholar 

  35. Heusel M, Ramsauer H, Unterthiner T, Nessler B, Hochreiter S (2017) Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in neural information processing systems, pp 6626–6637

  36. Hinton GE (2012) A practical guide to training restricted Boltzmann machines. In: Montavon G, Orr GB, Muller KR (eds) Neural networks: tricks of the trade. Springer, Berlin, pp 599–619

    Google Scholar 

  37. Hinton GE, Osindero S, Teh YW (2006) A fast learning algorithm for deep belief nets. Neural Comput 18(7):1527–1554

    MathSciNet  MATH  Google Scholar 

  38. Hsu CC, Lin CW, Su WT, Cheung G (2019) Sigan: siamese generative adversarial network for identity-preserving face hallucination. IEEE Trans Image Process 28(12):6225–6236

    MathSciNet  MATH  Google Scholar 

  39. Hu Z, Turki T, Wang JT (2020) Generative adversarial networks for stochastic video prediction with action control. IEEE Access 8:63336–63348

    Google Scholar 

  40. Huang S, Lei K (2020) Igan-ids: an imbalanced generative adversarial network towards intrusion detection system in ad-hoc networks. Ad Hoc Netw 105:102177

    Google Scholar 

  41. Im DJ, Kim CD, Jiang H, Memisevic R (2016) Generating images with recurrent adversarial networks. arXiv preprint arXiv:1602.05110

  42. Iranmanesh SM, Riggan B, Hu S, Nasrabadi NM (2020) Coupled generative adversarial network for heterogeneous face recognition. Image Vis Comput 94:103861

    Google Scholar 

  43. Isola P, Zhu JY, Zhou T, Efros AA (2017) Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1125–1134

  44. Jin X, Chen Z, Li W (2020) Ai-gan: asynchronous interactive generative adversarial network for single image rain removal. Pattern Recogn 100:107143

    Google Scholar 

  45. Jin Y, Zhang J, Li M, Tian Y, Zhu H, Fang Z (2017) Towards the automatic anime characters creation with generative adversarial networks. arXiv preprint arXiv:1708.05509

  46. Karras T, Aila T, Laine S, Lehtinen J (2017) Progressive growing of gans for improved quality, stability, and variation. arXiv preprint arXiv:1710.10196

  47. Kasem HM, Hung KW, Jiang J (2019) Spatial transformer generative adversarial network for robust image super-resolution. IEEE Access 7:182993–183009

    Google Scholar 

  48. Kim HJ, Lee D (2020) Image denoising with conditional generative adversarial networks (cgan) in low dose chest images. Nucl Instrum Methods Phys Res, Sect A 954:161914

    Google Scholar 

  49. Kim K, Myung H (2018) Autoencoder-combined generative adversarial networks for synthetic image data generation and detection of jellyfish swarm. IEEE Access 6:54207–54214

    Google Scholar 

  50. Kim T, Cha M, Kim H, Lee JK, Kim J (2017) Learning to discover cross-domain relations with generative adversarial networks. In: Proceedings of the 34th international conference on machine learning-Volume 70, JMLR. org, pp 1857–1865

  51. Kuang Y, Lan T, Peng X, Selasi GE, Liu Q, Zhang J (2020) Unsupervised multi-discriminator generative adversarial network for lung nodule malignancy classification. IEEE Access 8:77725–77734

    Google Scholar 

  52. Kupyn O, Budzan V, Mykhailych M, Mishkin D, Matas J (2018) Deblurgan: blind motion deblurring using conditional adversarial networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 8183–8192

  53. Kwak H, Zhang BT (2016) Generating images part by part with composite generative adversarial networks. arXiv preprint arXiv:1607.05387

  54. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444

    Google Scholar 

  55. Ledig C, Theis L, Huszár F, Caballero J, Cunningham A, Acosta A, Aitken A, Tejani A, Totz J, Wang Z, et al. (2017) Photo-realistic single image super-resolution using a generative adversarial network. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4681–4690

  56. Lee M, Seok J (2019) Controllable generative adversarial network. IEEE Access 7:28158–28169

    Google Scholar 

  57. Lei B, Xia Z, Jiang F, Jiang X, Ge Z, Xu Y, Qin J, Chen S, Wang T, Wang S (2020) Skin lesion segmentation via generative adversarial networks with dual discriminators. Med Image Anal 64:101716

    Google Scholar 

  58. Lei M, Zhou Y, Zhou L, Zheng J, Li M, Zou L (2019) Noise-robust wagon text extraction based on defect-restore generative adversarial network. IEEE Access 7:168236–168246

    Google Scholar 

  59. Li H, Tang J (2020) Dairy goat image generation based on improved-self-attention generative adversarial networks. IEEE Access 8:62448–62457

    Google Scholar 

  60. Li J, Liang X, Wei Y, Xu T, Feng J, Yan S (2017a) Perceptual generative adversarial networks for small object detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1222–1230

  61. Li J, Monroe W, Shi T, Jean S, Ritter A, Jurafsky D (2017b) Adversarial learning for neural dialogue generation. arXiv preprint arXiv:1701.06547

  62. Li X, Chen L, Wang L, Wu P, Tong W (2018a) Scgan: disentangled representation learning by adding similarity constraint on generative adversarial nets. IEEE Access 7:147928–147938

    Google Scholar 

  63. Li Y, Pan Q, Wang S, Yang T, Cambria E (2018b) A generative model for category text generation. Inf Sci 450:301–315

    MathSciNet  Google Scholar 

  64. Lin S, He Z, Sun L (2019) Defect enhancement generative adversarial network for enlarging data set of microcrack defect. IEEE Access 7:148413–148423

    Google Scholar 

  65. Liu L, Wang S, Wan L (2019) Component semantic prior guided generative adversarial network for face super-resolution. IEEE Access 7:77027–77036

    Google Scholar 

  66. Liu MY, Tuzel O (2016) Coupled generative adversarial networks. In: Advances in neural information processing systems, pp 469–477

  67. Liu W, Anguelov D, Erhan D, Szegedy C, Reed S, Fu CY, Berg AC (2016) Ssd: Single shot multibox detector. In: European conference on computer vision, Springer, pp 21–37

  68. Mandal B, Puhan NB, Verma A (2018) Deep convolutional generative adversarial network-based food recognition using partially labeled data. IEEE Sens Lett 3(2):1–4

    Google Scholar 

  69. Masi I, Trn AT, Hassner T, Leksut JT, Medioni G (2016) Do we really need to collect millions of faces for effective face recognition? In: European conference on computer vision, Springer, pp 579–596

  70. Metz L, Poole B, Pfau D, Sohl-Dickstein J (2016) Unrolled generative adversarial networks. arXiv preprint arXiv:1611.02163

  71. Mirza M, Osindero S (2014) Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784

  72. Odena A, Olah C, Shlens J (2016) Conditional image synthesis with auxiliary classi er gans arxiv e-prints. (oct. arXiv preprint arXiv:1610.09585

  73. Oluwasanmi A, Aftab MU, Shokanbi A, Jackson J, Kumeda B, Qin Z (2020) Attentively conditioned generative adversarial network for semantic segmentation. IEEE Access 8:31733–31741

    Google Scholar 

  74. Pan T, Chen J, Xie J, Chang Y, Zhou Z (2020) Intelligent fault identification for industrial automation system via multi-scale convolutional generative adversarial network with partially labeled samples. ISA Trans 101:379–389

    Google Scholar 

  75. Pang Y, Xie J, Li X (2018) Visual haze removal by a unified generative adversarial network. IEEE Trans Circuits Syst Video Technol 29(11):3211–3221

    Google Scholar 

  76. Park J, Han DK, Ko H (2020) Fusion of heterogeneous adversarial networks for single image dehazing. IEEE Trans Image Process 29:4721–4732

    Google Scholar 

  77. Perarnau G, Van De Weijer J, Raducanu B, Álvarez JM (2016) Invertible conditional gans for image editing. arXiv preprint arXiv:1611.06355

  78. Qi L, Zhang H, Tan W, Qi S, Xu L, Yao Y, Qian W (2019) Cascaded conditional generative adversarial networks with multi-scale attention fusion for automated bi-ventricle segmentation in cardiac mri. IEEE Access 7:172305–172320

    Google Scholar 

  79. Qian Y, Hu H, Tan T (2019) Data augmentation using generative adversarial networks for robust speech recognition. Speech Commun 114:1–9

    Google Scholar 

  80. Radford A, Metz L, Chintala S (2015) Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434

  81. Rizzo G, Van THM (2020) Adversarial text generation with context adapted global knowledge and a self-attentive discriminator. Inf Process Manag 102217

  82. Rong C, Zhang X, Lin Y (2020) Feature-improving generative adversarial network for face frontalization. IEEE Access 8:68842–68851

    Google Scholar 

  83. Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional network for biomedical image segmentation. In: International conference on medical image computing and computer-assisted intervention, Springer, pp 234–241

  84. Roth K, Lucchi A, Nowozin S, Hofmann T (2017) Stabilizing training of generative adversarial networks through regularization. In: Advances in neural information processing systems, pp 2018–2028

  85. Ruan Y, Li D, Marshall H, Miao T, Cossetto T, Chan I, Daher O, Accorsi F, Goela A, Li S (2020) Mb-fsgan: joint segmentation and quantification of kidney tumor on ct by the multi-branch feature sharing generative adversarial network. Med Image Anal 64:101721

    Google Scholar 

  86. Salimans T, Goodfellow I, Zaremba W, Cheung V, Radford A, Chen X (2016) Improved techniques for training gans. In: Advances in neural information processing systems, pp 2234–2242

  87. Schlegl T, Seeböck P, Waldstein SM, Schmidt-Erfurth U, Langs G (2017) Unsupervised anomaly detection with generative adversarial networks to guide marker discovery. In: International conference on information processing in medical imaging, Springer, pp 146–157

  88. Shaker AM, Tantawi M, Shedeed HA, Tolba MF (2020) Generalization of convolutional neural networks for ecg classification using generative adversarial networks. IEEE Access 8:35592–35605

    Google Scholar 

  89. Shao S, Wang P, Yan R (2019) Generative adversarial networks for data augmentation in machine fault diagnosis. Comput Ind 106:85–93

    Google Scholar 

  90. Shi Y, Li Q, Zhu XX (2018) Building footprint generation using improved generative adversarial networks. IEEE Geosci Remote Sens Lett 16(4):603–607

    Google Scholar 

  91. Singh VK, Rashwan HA, Romani S, Akram F, Pandey N, Sarker MMK, Saleh A, Arenas M, Arquez M, Puig D et al (2020) Breast tumor segmentation and shape classification in mammograms using generative adversarial and convolutional neural network. Expert Syst Appl 139:112855

    Google Scholar 

  92. Sun Y, Tang J, Shu X, Sun Z, Tistarelli M (2020) Facial age synthesis with label distribution-guided generative adversarial network. IEEE Trans Inf Forensics Secur 15:2679–2691

    Google Scholar 

  93. Taigman Y, Polyak A, Wolf L (2016) Unsupervised cross-domain image generation. arXiv preprint arXiv:1611.02200

  94. Tseng BW, Wu PY (2020) Compressive privacy generative adversarial network. IEEE Trans Inf Forensics Secur 15:2499–2513

    Google Scholar 

  95. Wang C, Xu C, Yao X, Tao D (2019a) Evolutionary generative adversarial networks. IEEE Trans Evol Comput 23(6):921–934

    Google Scholar 

  96. Wang H, Tao C, Qi J, Li H, Tang Y (2019b) Semi-supervised variational generative adversarial networks for hyperspectral image classification. In: IGARSS 2019-2019 IEEE International geoscience and remote sensing symposium, IEEE, pp 9792–9794

  97. Wang J, Yang Z, Zhang J, Zhang Q, Chien WTK (2019c) Adabalgan: an improved generative adversarial network with imbalanced learning for wafer defective pattern recognition. IEEE Trans Semicond Manuf 32(3):310–319

    Google Scholar 

  98. Wang K, Wan X (2019) Automatic generation of sentimental texts via mixture adversarial networks. Artif Intell 275:540–558

    MATH  Google Scholar 

  99. Wang P, Hou B, Shao S, Yan R (2019d) Ecg arrhythmias detection using auxiliary classifier generative adversarial network and residual network. IEEE Access 7:100910–100922

    Google Scholar 

  100. Wang Q, Fan H, Zhu L, Tang Y (2018a) Deeply supervised face completion with multi-context generative adversarial network. IEEE Signal Process Lett 26(3):400–404

    Google Scholar 

  101. Wang TC, Liu MY, Zhu JY, Tao A, Kautz J, Catanzaro B (2018b) High-resolution image synthesis and semantic manipulation with conditional gans. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 8798–8807

  102. Wang X, Yu K, Wu S, Gu J, Liu Y, Dong C, Qiao Y, Change Loy C (2018c) Esrgan: Enhanced super-resolution generative adversarial networks. In: Proceedings of the European conference on computer vision (ECCV)

  103. Yr Wang, Sun Gd, Jin Q (2020) Imbalanced sample fault diagnosis of rotating machinery using conditional variational auto-encoder generative adversarial network. Appl Soft Comput 92:106333

    Google Scholar 

  104. Wang Z, Simoncelli EP, Bovik AC (2003) Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar conference on signals, systems & computers, 2003, IEEE, vol 2, pp 1398–1402

  105. Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13(4):600–612

    Google Scholar 

  106. Wen S, Liu W, Yang Y, Huang T, Zeng Z (2018) Generating realistic videos from keyframes with concatenated gans. IEEE Trans Circuits Syst Video Technol 29(8):2337–2348

    Google Scholar 

  107. Wu J, Zhang C, Xue T, Freeman B, Tenenbaum J (2016) Learning a probabilistic latent space of object shapes via 3d generative-adversarial modeling. In: Advances in neural information processing systems, pp 82–90

  108. Wu R, Gu X, Tao X, Shen X, Tai YW, Jia J (2019) Landmark assisted cyclegan for cartoon face generation. arXiv preprint arXiv:1907.01424

  109. Xiang P, Wang L, Wu F, Cheng J, Zhou M (2019) Single-image de-raining with feature-supervised generative adversarial network. IEEE Signal Process Lett 26(5):650–654

    Google Scholar 

  110. Xu T, Zhang P, Huang Q, Zhang H, Gan Z, Huang X, He X (2018) Attngan: fine-grained text to image generation with attentional generative adversarial networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1316–1324

  111. Yan K, Chong A, Mo Y (2020) Generative adversarial network for fault detection diagnosis of chillers. Build Environ 172:106698

    Google Scholar 

  112. Yanagi R, Togo R, Ogawa T, Haseyama M (2019) Query is gan: Scene retrieval with attentional text-to-image generative adversarial network. IEEE Access 7:153183–153193

    Google Scholar 

  113. Yang S, Xie L, Chen X, Lou X, Zhu X, Huang D, Li H (2017) Statistical parametric speech synthesis using generative adversarial networks under a multi-task learning framework. In: 2017 IEEE Automatic speech recognition and understanding workshop (ASRU), IEEE, pp 685–691

  114. Yang W, Hui C, Chen Z, Xue JH, Liao Q (2019a) Fv-gan: finger vein representation using generative adversarial networks. IEEE Trans Inf Forensics Secur 14(9):2512–2524

    Google Scholar 

  115. Yang Y, Dan X, Qiu X, Gao Z (2020) Fggan: feature-guiding generative adversarial networks for text generation. IEEE Access 8:105217–105225

    Google Scholar 

  116. Yang Z, Chen Y, Le Z, Fan F, Pan E (2019b) Multi-source medical image fusion based on wasserstein generative adversarial networks. IEEE Access 7:175947–175958

    Google Scholar 

  117. Ye F, Zhu F, Fu Y, Shen B (2019) Ecg generation with sequence generative adversarial nets optimized by policy gradient. IEEE Access 7:159369–159378

    Google Scholar 

  118. Yoo D, Kim N, Park S, Paek AS, Kweon IS (2016) Pixel-level domain transfer. In: European conference on computer vision, Springer, pp 517–532

  119. You S, You N, Pan M (2019) Pi-rec: progressive image reconstruction network with edge and color domain. arXiv preprint arXiv:1903.10146

  120. Yu C, Wang W, Yan J (2020a) Self-supervised animation synthesis through adversarial training. IEEE Access 8:128140–128151

    Google Scholar 

  121. Yu H, Li Z, Zhang G, Liu P, Wang J (2020b) Extracting and predicting taxi hotspots in spatiotemporal dimensions using conditional generative adversarial neural networks. IEEE Trans Veh Technol 69(4):3680–3692

    Google Scholar 

  122. Yu L, Zhang W, Wang J, SeqGAN YY (2016) Sequence generative adversarial nets with policy gradient. arxiv e-prints, page. arXiv preprint arXiv:1609.05473

  123. Yu W, Chang T, Guo X, Wang X, Liu B, He Y (2020c) Ugan: unified generative adversarial networks for multidirectional text style transfer. IEEE Access 8:55170–55180

    Google Scholar 

  124. Yuan J, He Z (2020) Adversarial dual network learning with randomized image transform for restoring attacked images. IEEE Access 8:22617–22624

    Google Scholar 

  125. Zhang C, Wu L, Wang Y (2019a) Crossing generative adversarial networks for cross-view person re-identification. Neurocomputing 340:259–269

    Google Scholar 

  126. Zhang H, Xu T, Li H, Zhang S, Wang X, Huang X, Metaxas DN (2017) Stackgan: Text to photo-realistic image synthesis with stacked generative adversarial networks. In: Proceedings of the IEEE international conference on computer vision, pp 5907–5915

  127. Zhang H, Xu T, Li H, Zhang S, Wang X, Huang X, Metaxas DN (2018) Stackgan++: realistic image synthesis with stacked generative adversarial networks. IEEE Trans Pattern Anal Mach Intell 41(8):1947–1962

    Google Scholar 

  128. Zhang H, Goodfellow I, Metaxas D, Odena A (2019b) Self-attention generative adversarial networks. In: International conference on machine learning, PMLR, pp 7354–7363

  129. Zhang W, Li X, Jia XD, Ma H, Luo Z, Li X (2020a) Machinery fault diagnosis with imbalanced data using deep generative adversarial networks. Measurement 152:107377

    Google Scholar 

  130. Zhang X, Zhou Y, Pei S, Zhuge J, Chen J (2020b) Adversarial examples detection for xss attacks based on generative adversarial networks. IEEE Access 8:10989–10996

    Google Scholar 

  131. Zhang Y, Miao S, Mansi T, Liao R (2020c) Unsupervised x-ray image segmentation with task driven generative adversarial networks. Med Image Anal 62:101664

    Google Scholar 

  132. Zhao B, Li W, Gong W (2019a) Deep pyramid generative adversarial network with local and nonlocal similarity features for natural motion image deblurring. IEEE Access 7:185893–185907

    Google Scholar 

  133. Zhao J, Mathieu M, LeCun Y (2016) Energy-based generative adversarial network. arXiv preprint arXiv:1609.03126

  134. Zhao J, Zhang J, Li Z, Hwang JN, Gao Y, Fang Z, Jiang X, Huang B (2019b) Dd-cyclegan: unpaired image dehazing via double-discriminator cycle-consistent generative adversarial network. Eng Appl Artif Intell 82:263–271

    Google Scholar 

  135. Zheng J, Song W, Wu Y, Xu R, Liu F (2019) Feature encoder guided generative adversarial network for face photo-sketch synthesis. IEEE Access 7:154971–154985

    Google Scholar 

  136. Zhou Z, Wang Y, Guo Y, Qi Y, Yu J (2019) Image quality improvement of hand-held ultrasound devices with a two-stage generative adversarial network. IEEE Trans Biomed Eng 67(1):298–311

    Google Scholar 

  137. Zhu D, Xia S, Zhao J, Zhou Y, Jian M, Niu Q, Yao R, Chen Y (2020) Diverse sample generation with multi-branch conditional generative adversarial network for remote sensing objects detection. Neurocomputing 381:40–51

    Google Scholar 

  138. Zhu JY, Krähenbühl P, Shechtman E, Efros AA (2016) Generative visual manipulation on the natural image manifold. In: European conference on computer vision, Springer, pp 597–613

  139. Zhu JY, Park T, Isola P, Efros AA (2017) Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE international conference on computer vision, pp 2223–2232

  140. Zhu L, Chen Y, Ghamisi P, Benediktsson JA (2018) Generative adversarial networks for hyperspectral image classification. IEEE Trans Geosci Remote Sens 56(9):5046–5063

    Google Scholar 

  141. Zhuang H, Zhang W (2019) Generating semantically similar and human-readable summaries with generative adversarial networks. IEEE Access 7:169426–169433

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prabhu Jayagopal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pavan Kumar, M.R., Jayagopal, P. Generative adversarial networks: a survey on applications and challenges. Int J Multimed Info Retr 10, 1–24 (2021). https://doi.org/10.1007/s13735-020-00196-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13735-020-00196-w

Keywords

Navigation