Skip to main content
Log in

PAMAM dendrimer-enhanced removal of cobalt ions based on multiple-response optimization using response surface methodology

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

This study introduces poly(amidoamine) PAMAM dendrimers as new macromolecular complexation agents for Co(II) removal in polymer-assisted ultrafiltration (PAUF). A five-level three-factor design of experiments (DOE), central composite design type, and response surface methodology (RSM) were used together to find out the interaction effects and optimize three variables, i.e., initial Co(II) concentration ([Co2+]0), PAMAM dendrimer-to-Co(II) ratio (r), and pH of solution. Multiple-response simultaneous optimization was conducted by using desirability function. The goal of 73.6% overall desirability was attained for the removal efficiency (R) and metal retention capacity (q). The predicted results obtained for the simultaneous optimization are R = 76.78% and q = 392.09 mg/g. The optimum conditions derived via RSM were found to be as follows: [Co2+]0 = 4.14 mg/L, r = 2, and pH = 9.0. Verification experiments (R = 75.73% and q = 387.32 mg/g) confirmed the validity of the predicted model. The DOE–RSM-utilized and desirability function-optimized PAMAM dendrimer-enhanced ultrafiltration (PAMAM-DEUF) process was used for the first time in this study. The results are comparable to those provided by the reference PAUF technique.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. R. Solanki, R. Dhankhar, Biochemical changes and adaptive strategies of plants under heavy metal stress. Biologia 66(2), 195–204 (2011). https://doi.org/10.2478/s11756-011-0005-6

    Article  CAS  Google Scholar 

  2. H.A. Wayland, S.N. Boury, B.P. Chhetri, A. Brandt, M.A. Proskurnin, V.A. Filichkina, V.P. Zharov, A.S. Biris, A. Ghosh, Advanced cellulosic materials for treatment and detection of industrial contaminants in wastewater. Chem Sel 1(15), 4472–4488 (2016). https://doi.org/10.1002/slct.201600653

    Article  CAS  Google Scholar 

  3. A. Tripathi, M.R. Ranjan, Heavy metal removal from wastewater using low cost adsorbents. J. Bioremdiat. Biodegrad. 6(6), 1000315/1000311–1000315/1000315 (2015). https://doi.org/10.4172/2155-6199.1000315

    Article  CAS  Google Scholar 

  4. F. Qin, B. Wen, X.Q. Shan, Y.N. Xie, T. Liu, S.Z. Zhang, S.U. Khan, Mechanisms of competitive adsorption of Pb, Cu, and Cd on peat. Environ. Pollut. 144(2), 669–680 (2006). https://doi.org/10.1016/j.envpol.2005.12.036

    Article  CAS  PubMed  Google Scholar 

  5. S.E. Bailey, T.J. Olin, R.M. Bricka, D.D. Adrian, A review of potentially low-cost sorbents for heavy metals. Water Res. 33(11), 2469–2479 (1999). https://doi.org/10.1016/S0043-1354(98)00475-8

    Article  CAS  Google Scholar 

  6. A. Netzer, D.E. Hughes, Adsorption of copper, lead and cobalt by activated carbon. Water Res. 18(8), 927–933 (1984). https://doi.org/10.1016/0043-1354(84)90241-0

    Article  CAS  Google Scholar 

  7. C. Gómez-Lahoz, F. García-Herruzo, J.M. Rodríguez-Maroto, J.J. Rodríguez, Cobalt(II) removal from water by chemical reduction with sodium borohydride. Water Res. 27(6), 985–992 (1993). https://doi.org/10.1016/0043-1354(93)90062-M

    Article  Google Scholar 

  8. WHO, World Health Organization, A compendium of standards for wastewater reuse in the Eastern Mediterranean Region, (World Health Organization Regional Office for the Eastern Mediterranean, Cairo, Egypt; Regional Centre for Environmental Health Activities CEHA, Amman, Jordan, 2006)

  9. E.I. Hamilton, The geobiochemistry of cobalt. Sci. Total Environ. 150(1–3), 7–39 (1990). https://doi.org/10.1016/0048-9697(94)90126-0

    Article  Google Scholar 

  10. A. Kabata-Pendias, H. Pendias, Trace Elements in Soils and Plants (CRC Press, Boca Raton, 1984), pp. 238–245

    Google Scholar 

  11. Q. Wang, L. Chen, Y. Sun, Removal of radiocobalt from aqueous solution by oxidized MWCNT. J. Radioanal. Nucl. Chem. 291(3), 787–795 (2012). https://doi.org/10.1007/s10967-011-1352-z

    Article  CAS  Google Scholar 

  12. Y. Huang, L. Chen, H. Wang, Removal of Co(II) from aqueous solution by using hydroxyapatite. J. Radioanal. Nucl. Chem. 291(3), 777–785 (2012). https://doi.org/10.1007/s10967-011-1351-0

    Article  CAS  Google Scholar 

  13. K. Shang, Y.Z. Yang, J.X. Guo, W.J. Lu, F. Liu, W. Wang, Extraction of cobalt by the AOT microemulsion system. J. Radioanal. Nucl. Chem. 291(3), 629–633 (2012). https://doi.org/10.1007/s10967-011-1443-x

    Article  CAS  Google Scholar 

  14. H. Omar, H. Arida, A. Daifullah, Adsorption of 60Co radionuclides from aqueous solution by raw and modified bentonite. Appl. Clay Sci. 44(1–2), 21–26 (2009). https://doi.org/10.1016/j.clay.2008.12.013

    Article  CAS  Google Scholar 

  15. J. Oliva, J. De Pablo, J.L. Cortina, J. Cama, C. Ayora, Removal of cadmium, copper, nickel, cobalt and mercury from water by Apatite II™: column experiments. J. Hazard. Mater. 194, 312–323 (2011). https://doi.org/10.1016/j.jhazmat.2011.07.104

    Article  CAS  PubMed  Google Scholar 

  16. A. Ahmadpour, M. Tahmasbi, T.R. Bastami, J.A. Besharati, Rapid removal of cobalt ion from aqueous solutions by almond green hull. J. Hazard. Mater. 166(2–3), 925–930 (2009). https://doi.org/10.1016/j.jhazmat.2008.11.103

    Article  CAS  PubMed  Google Scholar 

  17. J. Mizera, G. Mizerová, V. Machovič, L. Borecká, Sorption of cesium, cobalt and europium on low-rank coal and chitosan. Water Res. 41(3), 620–626 (2007). https://doi.org/10.1016/j.watres.2006.11.008

    Article  CAS  PubMed  Google Scholar 

  18. V.K. Gupta, C.K. Jain, I. Ali, M. Sharma, V.K. Saini, Removal of cadmium and nickel from wastewater using bagasse fly ash—a sugar industry waste. Water Res. 37(16), 4038–4044 (2003). https://doi.org/10.1016/S0043-1354(03)00292-6

    Article  CAS  PubMed  Google Scholar 

  19. V.K. Gupta, I. Ali, T.A. Saleh, A. Nayak, S. Agarwal, Chemical treatment technologies for waste-water recycling—an overview. RSC Adv. 2(16), 6380–6388 (2012). https://doi.org/10.1039/c2ra20340e

    Article  CAS  Google Scholar 

  20. M. Nourbakhsh, Y. Sag, D. Ozer, Z. Aksu, T. Kutsal, A. Caglar, A comparative-study of various biosorbents for removal of chromium(VI) ions from industrial-waste waters. Process Biochem. 29(1), 1–5 (1994). https://doi.org/10.1016/0032-9592(94)80052-9

    Article  CAS  Google Scholar 

  21. P. Xu, G.M. Zeng, D.L. Huang, C.L. Feng, S. Hu, M.H. Zhao, C. Lai, Z. Wei, C. Huang, G.X. Xie, Z.F. Liu, Use of iron oxide nanomaterials in wastewater treatment: a review. Sci. Total Environ. 424, 1–10 (2012). https://doi.org/10.1016/j.scitotenv.2012.02.023

    Article  CAS  PubMed  Google Scholar 

  22. B.Y. Spivakov, K. Geckeler, E. Bayer, Liquid-phase polymer-based retention—the separation of metals by ultrafiltration on polychelatogens. Nature 315(6017), 313–315 (1985)

    Article  CAS  Google Scholar 

  23. M.K. Aroua, F.M. Zuki, N.M. Sulaiman, Removal of chromium ions from aqueous solutions by polymer-enhanced ultrafiltration. J. Hazard. Mater. 147(3), 752–758 (2007). https://doi.org/10.1016/j.jhazmat.2007.01.120

    Article  CAS  PubMed  Google Scholar 

  24. B.L. Rivas, E.D. Pereira, I. Moreno-Villoslada, Water-soluble polymer–metal ion interactions. Prog. Polym. Sci. 28(2), 173–208 (2003). https://doi.org/10.1016/S0079-6700(02)00028-X

    Article  CAS  Google Scholar 

  25. M.S. Diallo, S. Christie, P. Swaminathan, L. Balogh, X. Shi, W. Um, C. Papelis, W.A. Goddard III, J.H. Johnson Jr., Dendritic chelating agents. 1. Cu(II) binding to ethylene diamine core poly(amidoamine) dendrimers in aqueous solutions. Langmuir 20(7), 2640–2651 (2004). https://doi.org/10.1021/la036108k

    Article  CAS  PubMed  Google Scholar 

  26. M. Tulu, K.E. Geckeler, Synthesis and properties of hydrophilic polymers. Part 7. Preparation, characterization and metal complexation of carboxy-functional polyesters based on poly(ethylene glycol). Polym. Int. 48(9), 909–914 (1999). https://doi.org/10.1002/(sici)1097-0126(199909)48:9<909::aid-pi244>3.0.co;2-e

  27. M.S. Diallo, S. Christie, P. Swaminathan, J.H. Johnson, W.A. Goddard, Dendrimer enhanced ultrafiltration. 1. Recovery of Cu(II) from aqueous solutions using PAMAM dendrimers with ethylene diamine core and terminal NH2 groups. Environ. Sci. Technol. 39(5), 1366–1377 (2005). https://doi.org/10.1021/es048961r

    Article  CAS  PubMed  Google Scholar 

  28. L. Dambies, A. Jaworska, G. Zakrzewska-Trznadel, B. Sartowska, Comparison of acidic polymers for the removal of cobalt from water solutions by polymer assisted ultrafiltration. J. Hazard. Mater. 178(1–3), 988–993 (2010). https://doi.org/10.1016/j.jhazmat.2010.02.035

    Article  CAS  PubMed  Google Scholar 

  29. B.L. Rivas, E.D. Pereira, I. Moreno-Villoslada, Water-soluble polymer–metal ion interactions. Prog. Polym. Sci. 28(2), 173–208 (2003). https://doi.org/10.1016/S0079-6700(02)00028-X

    Article  CAS  Google Scholar 

  30. A. Rether, M. Schuster, Selective separation and recovery of heavy metal ions using water-soluble N-benzoylthiourea modified PAMAM polymers. React. Funct. Polym. 57(1), 13–21 (2003). https://doi.org/10.1016/j.reactfunctpolym.2003.06.002

    Article  CAS  Google Scholar 

  31. F. Zeng, S.C. Zimmerman, Dendrimers in supramolecular chemistry: from molecular recognition to self-assembly. Chem. Rev. 97(5), 1681–1712 (1997)

    Article  CAS  PubMed  Google Scholar 

  32. L. Balogh, D.A. Tomalia, Poly(amidoamine) dendrimer-templated nanocomposites. 1. Synthesis of zerovalent copper nanoclusters. J. Am. Chem. Soc. 120(29), 7355–7356 (1998). https://doi.org/10.1021/ja980861w

    Article  CAS  Google Scholar 

  33. M.S. Diallo, L. Balogh, A. Shafagati, J.H. Johnson, W.A. Goddard, D.A. Tomalia, Poly(amidoamine) dendrimers: a new class of high capacity chelating agents for Cu(II) ions. Environ. Sci. Technol. 33(5), 820–824 (1999). https://doi.org/10.1021/es980521a

    Article  CAS  Google Scholar 

  34. C.W. Li, C.H. Cheng, K.H. Choo, W.S. Yen, Polyelectrolyte enhanced ultrafiltration (PEUF) for the removal of Cd(II): effects of organic ligands and solution pH. Chemosphere 72(4), 630–635 (2008). https://doi.org/10.1016/j.chemosphere.2008.02.036

    Article  CAS  PubMed  Google Scholar 

  35. R. Molinari, T. Poerio, P. Argurio, Chemical and operational aspects in running the polymer assisted ultrafiltration for separation of copper(II)–citrate complexes from aqueous media. J. Membr. Sci. 295(1–2), 139–147 (2007). https://doi.org/10.1016/j.memsci.2007.03.002

    Article  CAS  Google Scholar 

  36. C. Cojocaru, G. Zakrzewska-Trznadel, A. Jaworska, Removal of cobalt ions from aqueous solutions by polymer assisted ultrafiltration using experimental design approach. Part 1: optimization of complexation conditions. J. Hazard. Mater. 169(1), 599–609 (2009). https://doi.org/10.1016/j.jhazmat.2009.03.145

    Article  CAS  PubMed  Google Scholar 

  37. N. Uzal, A. Jaworska, A. Miśkiewicz, G. Zakrzewska-Trznadel, C. Cojocaru, Optimization of Co2+ ions removal from water solutions via polymer enhanced ultrafiltration with application of PVA and sulfonated PVA as complexing agents. J. Colloid Interface Sci. 362(2), 615–624 (2011). https://doi.org/10.1016/j.jcis.2011.06.072

    Article  CAS  PubMed  Google Scholar 

  38. G. Derringer, R. Suich, Simultaneous optimization of several response variables. J. Qual. Technol. 12(4), 214–219 (1980)

    Article  Google Scholar 

  39. L. Vera Candioti, M.M. De Zan, M.S. Cámara, H.C. Goicoechea, Experimental design and multiple response optimization. Using the desirability function in analytical methods development. Talanta 124, 123–138 (2014). https://doi.org/10.1016/j.talanta.2014.01.034

    Article  CAS  Google Scholar 

  40. E. Ghasemi, A. Heydari, M. Sillanpaa, Superparamagnetic Fe3O4@EDTA nanoparticles as an efficient adsorbent for simultaneous removal of Ag(I), Hg(II), Mn(II), Zn(II), Pb(II) and Cd(II) from water and soil environmental samples. Microchem. J. 131, 51–56 (2017). https://doi.org/10.1016/j.microc.2016.11.011

    Article  CAS  Google Scholar 

  41. M. Amini, H. Younesi, N. Bahramifar, Statistical modeling and optimization of the cadmium biosorption process in an aqueous solution using Aspergillus niger. Colloids Surf. A 337(1–3), 67–73 (2009). https://doi.org/10.1016/j.colsurfa.2008.11.053

    Article  CAS  Google Scholar 

  42. M. Amini, H. Younesi, Biosorption of Cd(II), Ni(II), and Pb(II) from aqueous solution by dried biomass of Aspergillus niger: application of response surface methodology to the optimization of process parameters. Clean Soil Air Water 37(10), 776–786 (2009). https://doi.org/10.1002/clen.200900090

    Article  CAS  Google Scholar 

  43. M. Amini, H. Younesi, N. Bahramifar, A.A.Z. Lorestani, F. Ghorbani, A. Daneshi, M. Sharifzadeh, Application of response surface methodology for optimization of lead biosorption in an aqueous solution by Aspergillus niger. J. Hazard. Mater. 154(1–3), 694–702 (2008). https://doi.org/10.1016/j.jhazmat.2007.10.114

    Article  CAS  PubMed  Google Scholar 

  44. A.S. Ertürk, M.U. Gürbüz, M. Tülü, The effect of PAMAM dendrimer concentration, generation size and surface functional group on the aqueous solubility of candesartan cilexetil. Pharm. Dev. Technol. 22(1), 111–121 (2017). https://doi.org/10.1080/10837450.2016.1219372

    Article  CAS  PubMed  Google Scholar 

  45. H. Watanabe, Spectrophotometric determination of cobalt with 1-(2-pyridylazo)-2-naphthol and surfactants. Talanta 21(4), 295–302 (1974). https://doi.org/10.1016/0039-9140(74)80007-X

    Article  CAS  PubMed  Google Scholar 

  46. D. Rana, T. Matsuura, M. Kassim, A. Ismail, Radioactive decontamination of water by membrane processes—a review. Desalination 321, 77–92 (2013)

    Article  CAS  Google Scholar 

  47. M.A. Bezerra, R.E. Santelli, E.P. Oliveira, L.S. Villar, L.A. Escaleira, Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 76(5), 965–977 (2008). https://doi.org/10.1016/j.talanta.2008.05.019

    Article  CAS  Google Scholar 

  48. R.H. Myers, D.C. Montgomery, C.M. Anderson-Cook, Response Surface Methodology: Process and Product Optimization Using Designed Experiments (Wiley, Hoboken, 2016)

    Google Scholar 

  49. W.G. Cochran, G.M. Cox, Experimental designs (Wiley, Hoboken, 1957)

    Google Scholar 

  50. M.S. Diallo, W. Arasho, J.H. Johnson Jr., W.A. Goddard Iii, Dendritic chelating agents. 2. U(VI) binding to poly(amidoamine) and poly(propyleneimine) dendrimers in aqueous solutions. Environ. Sci. Technol. 42(5), 1572–1579 (2008)

    Article  CAS  PubMed  Google Scholar 

  51. M. Palencia, B.L. Rivas, E. Pereira, A. Hernández, P. Prádanos, Study of polymer–metal ion–membrane interactions in liquid-phase polymer-based retention (LPR) by continuous diafiltration. J. Membr. Sci. 336(1–2), 128–139 (2009). https://doi.org/10.1016/j.memsci.2009.03.016

    Article  CAS  Google Scholar 

  52. B.L. Rivas, E.D. Pereira, M. Palencia, J. Sánchez, Water-soluble functional polymers in conjunction with membranes to remove pollutant ions from aqueous solutions. Prog. Polym. Sci. 36(2), 294–322 (2011). https://doi.org/10.1016/j.progpolymsci.2010.11.001

    Article  CAS  Google Scholar 

  53. J.W. Osborne, Improving your data transformations: applying the Box–Cox transformation. Pract. Assess. Res. Eval. 15(12), 2 (2010)

    Google Scholar 

  54. M.J. Anderson, P.J. Whitcomb, RSM Simplified: Optimizing Processes Using Response Surface Methods for Design of Experiments (Taylor & Francis, New York, 2005)

    Google Scholar 

  55. L.V. Candioti, J.C. Robles, V.E. Mantovani, H.C. Goicoechea, Multiple response optimization applied to the development of a capillary electrophoretic method for pharmaceutical analysis. Talanta 69(1), 140–147 (2006). https://doi.org/10.1016/j.talanta.2005.09.021

    Article  CAS  PubMed  Google Scholar 

  56. J. Zolgharnein, A. Shahmoradi, J.B. Ghasemi, Comparative study of Box–Behnken, central composite, and Doehlert matrix for multivariate optimization of Pb(II) adsorption onto Robinia tree leaves. J. Chemom. 27(1–2), 12–20 (2013). https://doi.org/10.1002/cem.2487

    Article  CAS  Google Scholar 

  57. J. Zolgharnein, N. Asanjarani, T. Shariatmanesh, Taguchi L16 orthogonal array optimization for Cd(II) removal using Carpinus betulus tree leaves: adsorption characterization. Int. Biodeterior. Biodegrad. 85, 66–77 (2013). https://doi.org/10.1016/j.ibiod.2013.06.010

    Article  CAS  Google Scholar 

  58. J. Zolgharnein, A. Shahmoradi, Adsorption of Cr(VI) onto Elaeagnus tree leaves: statistical optimization, equilibrium modeling, and kinetic studies. J. Chem. Eng. Data 55(9), 3428–3437 (2010). https://doi.org/10.1021/je100157y

    Article  CAS  Google Scholar 

  59. K. Geckeler, V. N. Rajasekharan Pillai, M. Mutter, Applications of soluble polymeric supports, in Polymer Products (Springer, Berlin, 1981), pp 65–94. https://doi.org/10.1007/3-540-10218-3_2

  60. E. Bayer, B.Y. Spivakov, K. Geckeler, Poly(ethyleneimine) as complexing agent for separation of metal ions using membrane filtration. Polym. Bull. 13(4), 307–311 (1985). https://doi.org/10.1007/bf00262113

    Article  CAS  Google Scholar 

  61. F. Fang, L. Kong, J. Huang, S. Wu, K. Zhang, X. Wang, B. Sun, Z. Jin, J. Wang, X.-J. Huang, J. Liu, Removal of cobalt ions from aqueous solution by an amination graphene oxide nanocomposite. J. Hazard. Mater. 270, 1–10 (2014). https://doi.org/10.1016/j.jhazmat.2014.01.031

    Article  CAS  PubMed  Google Scholar 

  62. GdC Pizarro, O.G. Marambio, M. Jeria-Orell, D.P. Oyarzún, B.L. Rivas, W.D. Habicher, Preparation, characterization, and metal ion retention capacity of Co(II) and Ni(II) from poly(p-HO- and p-Cl-phenylmaleimide-co-2-hydroxypropylmethacrylate) using the ultra filtration technique. J. Appl. Polym. Sci. 106(4), 2448–2455 (2007). https://doi.org/10.1002/app.26948

    Article  CAS  Google Scholar 

  63. O.G. Marambio, GdC Pizarro, M. Jeria-Orell, M. Huerta, C. Olea-Azar, W.D. Habicher, Poly(N-phenylmaleimide-co-acrylic acid)–copper(II) and poly(N-phenylmaleimide-co-acrylic acid)–cobalt(II) complexes: synthesis, characterization, and thermal behavior. J. Polym. Sci. Part A: Polym. Chem. 43(20), 4933–4941 (2005). https://doi.org/10.1002/pola.20955

    Article  CAS  Google Scholar 

  64. P. Ilaiyaraja, A. Deb, D. Ponraju, Removal of uranium and thorium from aqueous solution by ultrafiltration (UF) and PAMAM dendrimer assisted ultrafiltration (DAUF). J. Radioanal. Nucl. Chem. 303(1), 441–450 (2015). https://doi.org/10.1007/s10967-014-3462-x

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research has been supported by Adıyaman University Scientific Research Projects Coordination Department (Project Number: MÜFMAP/2015-0004). There is no conflict of interest. The author is grateful to his wife, Assist. Prof. Dr. Müzeyyen Ertürk, for many helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Serol Ertürk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ertürk, A.S. PAMAM dendrimer-enhanced removal of cobalt ions based on multiple-response optimization using response surface methodology. J IRAN CHEM SOC 15, 1685–1698 (2018). https://doi.org/10.1007/s13738-018-1366-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-018-1366-3

Keywords

Navigation