Skip to main content

Advertisement

Log in

Biosorption of chromium(VI) from aqueous solutions using waste plant biomass

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Metal biosorption on plant-based materials and agricultural wastes is a well practiced but a complex process affected by several factors. The biosorption of chromium(VI) from aqueous solution onto waste plant biomass of Portulaca Oleracea was studied in the present work. Batch studies were carried out to examine the effects of process parameters. Influence of altering various process parameters was studied. The biosorption process was fast, and equilibrium was achieved in 45 min of contact time. It was found that the biosorption capacity of plant material depends on many factors mainly on solution pH, with a maximum biosorption capacity for chromium at pH 2. The biosorption kinetics was tested with pseudo-first-order and pseudo-second-order reaction, and results showed that biosorption followed pseudo-second-order rate expression. Experimental equilibrium data were applied to two different isotherm models. Isotherm tests showed that equilibrium sorption data were better represented by Langmuir model, and the sorption capacity of plant biomass was found to be 54.945 mg/g. Thermodynamic parameters like ∆G 0, ∆H 0 and ∆S 0 were also evaluated, and it was found that the biosorption was spontaneous and endothermic in nature. Plant biomass was found to be an effective adsorbent for chromium(VI) from aqueous solution. This study indicated that plant biomass could be used as an efficient, cost-effective and environmentally safe biosorbent for the treatment of chromium containing aqueous solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Aksu Z, Akpinar D (2001) Competitive biosorption of phenol and chromium(VI) from binary mixtures onto dried anaerobic sludge. Biochem Eng J 7(3):183–193. doi:10.1016/S1369-703X(00)00126-1

    Article  CAS  Google Scholar 

  • Aksu Z, Tezer S (2005) Biosorption of reactive dyes on the green alga Chlorella vulgaris. Proc Biochem 40:1347–1361. doi:10.1016/j.procbio.2004.06.07

    Article  CAS  Google Scholar 

  • Antunes WM, Luna AS, Henriques CA, Costa ACS (2003) An evaluation of copper biosorption by brown seaweed under optimized conditions. Electron J Biotech 6(3):174–184

    Google Scholar 

  • Azouaoua N, Sadaouia Z, Djaafri A, Mokaddema H (2010) Adsorption of cadmium from aqueous solution onto untreated coffee grounds: equilibrium, kinetics and thermodynamics. J Hazard Mater 184(1–3):126–134. doi:10.1016/j.hazmat.2010.08.014

    Article  Google Scholar 

  • Baniamerian MJ, Moradi SE, Noori A, Salahi H (2009) The effect of surface modification on heavy metal ion removal from water by carbon nanoporous adsorbent. Appl Surf Sci 256:1347–1354

    Article  CAS  Google Scholar 

  • Baral SS, Das SN, Rath P (2006) Hexavalent chromium removal from aqueous solution by adsorption on treated sawdust. Biochem Eng J 31:216–222. doi:10.1016/j.bej.2006.08.003

    Article  CAS  Google Scholar 

  • Bellu S, Sala L, González J, Garcí S, Frascaroli M, Blanes P, García J, Peregrin JS, Ferrón J, Atria A, Harada M, Cong C, Niwa Y (2010) Thermodynamic and Dynamic of Chromium Biosorption by Pectic and Lignocellulocic Biowastes. J Water Resour Prot 2:888–897. doi:10.4236/jwarp.2010.210106

    Article  CAS  Google Scholar 

  • Costa M (2003) Potential hazards of hexavalent chromate in our drinking water. Regul Toxicol Pharm 188:1–5

    CAS  Google Scholar 

  • Cruz CCV, Da Costa ACA, Henriques CA, Luna AS (2004) Kinetic modeling and equilibrium studies during cadmium biosorption by dead Sargassum sp. Biomass. Biores Tech 91(3):249–257. doi:10.1016/S0960-8524(03)00194-9

    Article  CAS  Google Scholar 

  • Dakiky M, Khamis M, Manassra A, Mer’eb M (2002) Selective adsorption of chromium(VI) in industrial wastewater using low-cost abundantly available adsorbents. Adv Environ Res 6:533–540

    Article  CAS  Google Scholar 

  • Dean SA, Tobin JM (2009) Uptake of chromium cation and anions by milled peat. Resour Conserv Recycl 27:151–156

    Article  Google Scholar 

  • Dubey A, Shiwani S (2012) Adsorption of lead using a new green material obtained from Portulaca plant. Int J Environ Sci Tech 9(1):15–20. doi:10.1007/s13762-011-0012-8

    Article  CAS  Google Scholar 

  • Dubey A, Mishra A, Singhal S(2013) Application of dried plant biomass as novel low-cost adsorbent for removal of cadmium from aqueous solution. Int J Environ Sci Tech. doi:10.1007/s13762-013-0278-0

  • El-Shafey EI (2005) Behaviour of reduction–sorption of chromium(VI) from an aqueous solution on a modified sorbent from rice husk. Water Air Soil Pollut 163:81–102

    Article  CAS  Google Scholar 

  • Farooq U, Kozinski JA, Khan MA, Athar M (2010) Biosorption of heavy metal ions using wheat based biosorbents—a review of the recent literature. Bioresour Technol 101(14):5043–5053. doi:10.1016/j.biortech.2010.02.030

    Article  CAS  Google Scholar 

  • Fiol N, Escudero C, Villaescusa I (2008) Chromium sorption and Cr(VI) reduction to Cr(III) by grape stalks and yohimbe bark. Bioresour Technol 99(11):5030–5036. doi:10.1016/j.biortech.2007.09.007

    Article  CAS  Google Scholar 

  • Gupta VK, Rastogi A, Nayak A (2010) Adsorption studies on the removal of hexavalent chromium from aqueous solution using a low cost fertilizer industry waste material. J Colloid Interface Sci 342:135–141

    Article  CAS  Google Scholar 

  • Hadjmohammadi MR, Salary M, Biparva P (2011) Removal of Cr(VI) from Aqueous Solution Using Pine Needles powder as a biosorbent. J App Sc In Environ Sanitation 6(1):1–13

    CAS  Google Scholar 

  • Harbone JB (1998) Methods of extraction and isolation. Phytochemical Methods Chapman & Hall, London, pp 60–66

    Google Scholar 

  • Ho YS, Mckay G (1998) Sorption of dye from aqueous solution by peat. Chem Eng J 70(2):115–124

    Article  CAS  Google Scholar 

  • Ho YS, Mckay G (1999) Sorption of lead(II) ions on peat. Water Res 33(2):578–584

    Article  CAS  Google Scholar 

  • Kokate CK (1986) Practical pharmacognosy, 1st edn. Vallabh Prakashan, New Delhi

    Google Scholar 

  • Lagergren S (1898) About the theory of so-called adsorption of solution substances. Handlinge 24(4):147–156

    Google Scholar 

  • Langmuir (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40(9):1361–1403

    Article  CAS  Google Scholar 

  • Mahajan G, Sud D (2011) Kinetics and equilibrium studies of Cr(VI) metal ion remediation by Arachis Hypogea shell: a green approach. Bioresour Technol 6(3):3324–3338

    CAS  Google Scholar 

  • Malkoc CE, Nuhoglu-Dıaz A, Colın-Cruz F, Urena-Nunez M, Romero-Romo M, Palomar-Pardav E (2004) Cr(VI) removal from wastewater using low cost sorbent materials: roots of Typha latifolia and ashes. Environ Technol 25(8):907–917

    Article  Google Scholar 

  • Malkoc CE, Nuhoglu Y, Dundar M (2006) Adsorption of chromium(VI) on pomace-an olive oil industry waste: batch and column studies. J Hazard Mater 138:142–151. doi:10.1016/j.jhazmat.2006.05.051

    Article  CAS  Google Scholar 

  • Malkoc CE, Nuhoglu Y (2007) Potential of tea factory waste for chromium(VI) removal from aqueous solutions: thermodynamic and kinetic studies. Sep Purif Technol 54(3):291–298. doi:10.1016/j.seppur.2006.09.017

    Article  CAS  Google Scholar 

  • Nadeem R, Hanif MA, Mahmood A, Jamil MS, Ashraf M (2009) Biosorption of Cu(II) ions from aqueous effluents by blackgram bran (BGB). J Hazard Mater 168:1622–1625. doi:10.1016/j.jhazmat.2009.02.135

    Article  CAS  Google Scholar 

  • Nameni M, Alavi Moghadam MR, Arami M (2008) Adsorption of hexavalent chromium from aqueous solutions by wheat bran. Int J Environ Sci Tech 5(2):161–168

    Article  CAS  Google Scholar 

  • Park S, Jung WY (2001) Removal of chromium by activated carbon fibers plated with copper metal. Carbon Sci 2:115–121

    Google Scholar 

  • Patterson JW (1985) Industrial wastewater treatment technology, 2nd edn. Butterorth Publisher, Stoneham, MA

    Google Scholar 

  • Pehlivan E, Cetin S, Yanık BH (2006) Equilibrium studies for the sorption of zinc and copper from aqueous solutions using sugar beet pulp and fly ash. J Hazard Mater 135(1–3):193–199. doi:10.1016/j.jhazmat.2005.11.049

    Article  CAS  Google Scholar 

  • Pehlivan E, Pehlivan E, Tutar Kahraman H (2012) Hexavalent removal of chromium by Osage orange. Food Chem 133(4):1478–1484. doi:10.1016/j.foodchem.2012.02.037

    Article  CAS  Google Scholar 

  • Prabhakaran SK, Vijayaraghavan K, Balasubramanian R (2009) Removal of Cr(VI) ions by spent tea and coffee dusts: reduction to Cr(III) and biosorption. Ind Eng Chem Res 48:2113–2117. doi:10.1021/ie801380h

    Article  CAS  Google Scholar 

  • Raji C, Anirudhan TS (1998) Batch Cr(VI) removal by polyacrylamide-grafted sawdust: kinetics and thermodynamics. Water Res 32:3772–3780. doi:10.1016/S0043-1354(98)00150-X

    Article  CAS  Google Scholar 

  • Rowbotham AL, Levy LS, Shuker LK (2000) Chromium in the environment: an evaluation of exposure of the UK general population and possible adverse health effects. J Toxicol and Environ Health 3(3):145–178

    Article  CAS  Google Scholar 

  • Saikaew W, Kaewsam P (2010) Durian peel as biosorbent for removal of cadmium aqueous solution.J. Environ Res 32(1):17–30

    Google Scholar 

  • Shah BA, Shah AV, Singh RR (2009) Sorption isotherms and kinetics of chromium uptake from wastewater using natural sorbent material. Int J Environ Sci Tech 6(1):77–90

    Article  CAS  Google Scholar 

  • Sheng PX, Tan LH, Chen JP, Ting YP (2004) Biosorption performance of two brown marine algae for removal of chromium and cadmium. J Disper Sc and Tech 25:679–686. doi:10.1081/DIS-200027327

    Article  CAS  Google Scholar 

  • Singh KK, Rupainwar DC, Hasan SH (2005) Low cost biosorbent ‘Maize Bran’ for the removal of cadmium[II] from wastewater. J Ind Chem Soc 82:392–396

    Google Scholar 

  • Singh KK, Hasan SH (2005) Removal of copper from wastewater using rice polish (rice bran). J Ind Chem Soc 82:374–375

    CAS  Google Scholar 

  • Ucun H, Bayhan YK, Kaya Y, Cakici A, Algur OF (2002) Biosorption of chromium(VI) from aqueous solution by cone of Pinus sylvestris. Bioresour Technol 85:155–158

    Article  CAS  Google Scholar 

  • Vargas C, Brandao PFB, Agreda J, Castillo E (2012) Biosorption using compost: an alternative for removal of Chromium(VI) from aqueous solutions. Bioresour Technol 7(3):2711–2727

    CAS  Google Scholar 

  • Vinodhini V, Das N (2010) Relevant approach to assess the performance of sawdust as adsorbent of chromium(VI) ions from aqueous solutions. Int J Environ Sci Tech 7(1):85–92

    Article  CAS  Google Scholar 

  • Volesky B (2007) Biosorption and me. Water Res 41(18):4017–4029

    Article  CAS  Google Scholar 

  • Zvinowanda CM, Okonkwo JO, Shabalala PN, Agyei NM (2009) A novel adsorbent for heavy metal remediation in aqueous environments. Int J Environ Sci Tech 6(3):425–434

    Article  CAS  Google Scholar 

Weblink (Abstract)

Download references

Acknowledgments

Authors are thankful to the management of MMH College Ghaziabad for providing infrastructure support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Dubey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mishra, A., Dubey, A. & Shinghal, S. Biosorption of chromium(VI) from aqueous solutions using waste plant biomass. Int. J. Environ. Sci. Technol. 12, 1415–1426 (2015). https://doi.org/10.1007/s13762-014-0516-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-014-0516-0

Keywords

Navigation