Skip to main content

Advertisement

Log in

Bioethanol production from rice bran with optimization of parameters by Bacillus cereus strain McR-3

‘Fermentation of rice bran for fuel ethanol production’

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

The potential environmental benefits that can be obtained from replacing petroleum fuels with biofuels derived from renewable biomass sources are the main driving forces for promoting the production and use of biofuels. Due to depletion of fossil fuels, ethanol, which can be obtained via the bioconversion of renewable feedstock, is widely regarded as an efficient alternative for gasoline as transportation fuel. Biomass energy can play an important role in reducing greenhouse gas emissions. Rice bran is a by-product of milling process of rice, and due to its carbohydrate contents, it may serve as good source for bioethanol production. The present study deals with bioethanol production from rice bran and screening of bioethanol-producing bacteria from rice bran. In the screening process, three fermentative bacteria were obtained; they were studied on the basis of morphology, biochemical characteristics and maximum bioethanol production. The maximum bioethanol-producing bacteria was identified by sequencing method. The bacteria thus identified as Bacillus cereus strain McR-3 is a novel bacteria reported in bioethanol production from rice bran substrate. Different parameters like temperature and pH also affects the production of bioethanol. It was observed that optimum temperature and pH for maximum bioethanol production was 37 °C and 5, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ado SA, Olukotun GB, Ameh JB, Yabaya A (2009) Bioconversion of cassava starch to ethanol in a simultaneous saccharification and fermentation process by co-cultures of A. niger and S. cerevisiae. Sci World J 4(1):19–22

    Google Scholar 

  • Amerine R, Ough CS (1984) Methods for analysis of must and wine. Wiley, New York

    Google Scholar 

  • Aristidou A, Penttila M (2000) Metabolic engineering applications to renewable resource utilization. Curr Opin Biotechnol 11(2):187–198

    Article  CAS  Google Scholar 

  • Asli MS (2010) A study on some efficient parameters in batch fermentation of ethanol using S. cerevisiae SC1 extracted from fermented pomace. Afr J Biotech 9(20):2906–2912

    CAS  Google Scholar 

  • Bajpai PK, Margaritis A (1986) Effect of temperature and pH on immobilized Z. Mobilis for continuous production of ethanol. Biotechnol Bioeng 28(6):824–828

    Article  CAS  Google Scholar 

  • Banerjee S, Sen R, Pandey RA, Chakrabarti T, Satpute D, Giri BS, Mudliar S (2009) Evaluation of wet air oxidation as a pretreatment strategy for bioethanol production from rice husk and process optimization. Biomass Bioenerg 33:1680–1686

    Article  CAS  Google Scholar 

  • Beaugrand J, Cronier D, Bebeire P, Chabbert B (2004) Arabinoxylan and Hydroxycinnamate content of wheat bran in relation to endoxylanase susceptibility. J Cereal Sci 40:223–230

    Article  CAS  Google Scholar 

  • Beliya E, Tiwari S, Jadhav SK, Tiwari KL (2013) Deoiled rice bran as a source of bioethanol. Energy Explor Exploit 31(5):771–782

    Article  CAS  Google Scholar 

  • Caputi A Jr, Ueda M, Brown T (1968) Spectrophotometric determination of ethanol in wine. Am J Enol Vitic 19(3):160–165

    CAS  Google Scholar 

  • Cazetta ML, Celligio M, Buzato JB, Scarmino IS (2007) Fermentation of molasses by Zymomonas mobilis effects of temperature and sugar concentration on ethanol production. Bioresour Technol 98:2824–2828

    Article  CAS  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39(4):783–791

    Article  Google Scholar 

  • Gold RS, Meagher MM, Tong S, Hutkins RW, Comway T (1996) cloning and expression of Z.mobilis production of ethanol genes in Lactobacillus casei. Curr Micobiol 33:256–260

    Article  CAS  Google Scholar 

  • Gupta HP (1989) Rice bran offers India and oil source. J Am Oil Chem Soc 66(1):69

    Article  Google Scholar 

  • Harkin T (2000) Petroleum and ethanol fuels: tax incentives and related GAO works. United States General Office, Washington

    Google Scholar 

  • Howard L (1994) Biodiesel vs. other alternative fuels. Bio-state Development Agency

  • Hughes DB, Tudroszen WJ, Moye CJ (1984) The effect of temperature on the kinetics of ethanol production by thermotolerant strain of Kluyveromyces marxianus. Biotechnol Lett 6:1–6

    Article  CAS  Google Scholar 

  • Jeffries TW (2006) Engineering of yeast for xylose metabolism. Curr Opin Biotechnol 17:320–326

    Article  CAS  Google Scholar 

  • Jones ER (1953) Jones reagent. J Chem Soc 457:2548–3019

    Google Scholar 

  • Kataria R, Ghosh S (2011) Saccharification of Kans grass using enzyme mixture from Trichoderma reesei for bioethanol production. Bioresour Technol 102:9970–9975

    Article  CAS  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  CAS  Google Scholar 

  • Kristensen JB, Lisbeth GT, Claus F, Henning J, Thomas E (2008) Cell-wall structural changes in wheat straw pretreated for bioethanol production. Biotechnol Biofuels 1(5):1–9. doi:10.1186/1754-6834-1-5

    Google Scholar 

  • Le Man H, Behera SK, Park HS (2010) Optimization of operational parameters for ethanol production from Korean food waste leachate. Int J Environ Sci Technol 7(1):157–162

    Article  CAS  Google Scholar 

  • Marakis SG, Marakis GS (1996) Fructose syrup and ethanol from deseeded carob pod. J Food Sci Technol 33:108–111

    CAS  Google Scholar 

  • Miranda JR, Passarinho PC, Gouveia L (2012) Bioethanol production from Scenedesmus obliquus sugars: the influence of photobioreactors and culture conditions on biomass production. Appl Microbiol Biotechnol 2(96):555–564. doi:10.1007/00253-012-4338

    Article  Google Scholar 

  • Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686

    Article  CAS  Google Scholar 

  • Narendranath NV, Thomas KC, Ingledew WM (2000) Use of urea hydrogen peroxide in fuel alcohol production. Patent CA 2,300,807. Canadian Intellectual Property Office

  • Neelakandan T, Usharani G (2009) Optimization and production of bioethanol from cashew apple juice using immobilized yeast cells by S. cerevisiae. Am Eurasian J Sci Res 4(2):85–88

    CAS  Google Scholar 

  • Nimbkar NT, Ghanekar AR, Joseph RD (1989) Development of improved cultivars and management practices in sweet sorghum as a source of ethanol in technology and application for alternative uses of sorghum. National seminar held at Marathwada Agricultural University, Parbhani, pp 180–188

  • Pandey A, Tiwari S, Jadhav SK, Tiwari KL (2013) Bioconversion of lignocellulosic azolla into bioethanol. J Adv Phytotechnol Environ Sanit 2:59–64

    CAS  Google Scholar 

  • Perego L Jr, Dias CS, Koshimizu LH, Cruz MR, Borzani W (1985) Influence of temperature, dilution rate and sugar concentration in the establishment of steady state in continuous ethanol fermentation of molasses. Biomass Bioenergy 6(3):247–256

    Article  CAS  Google Scholar 

  • Periyasamy S, Venkatachalam S, Ramasamy S, Srinivasan V (2009) Production of bioethanol from sugar molasses using Saccharomyces cerevesiae. Mod Appl Sci 3(8):32–37

    Article  CAS  Google Scholar 

  • Pharmacopoeia of India (1985) The Indian pharmacopoeia. Published by the Controller of publications. 3rd edn, vol 2, pp 113–115

  • Pour S, Ardestani M, Sarraf M (2007) Fuels price structuring : a tool for integration of environmental concern into energy sector. Int J Environ Res 1(4):358–367

    Google Scholar 

  • Prescott H (2002) Laboratory exercises in microbiology. 5th edn, pp 1–449

  • Rousseau S, Roulean D, Yerushalmi L, Mayer RC (1992) Effect of temperature on fermentation kinetics of waste sulfite liquor by S. cerevisiae. J Chem Tech 53:285

    CAS  Google Scholar 

  • Rude MA, Schirmer A (2009) New microbial fuels: a biotech perspective. Curr Opin Microbiol 12(3):274–281

    Article  CAS  Google Scholar 

  • Saitou M, Nei N (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evolut 4:406–425

    CAS  Google Scholar 

  • Sanchez OJ, Caradona CA (2008) Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour Technol 99(1):137–141

    Article  Google Scholar 

  • Senthil Kumar V, Gunasekaran P (2005) Bioethanol production from cellulosic substrate: engineered bacteria and process integration challenges. J Sci Ind Res 64(11):845–853

    CAS  Google Scholar 

  • Sharma HR, Chauhan GS, Agrawal K (2004) Physico-chemical characteristics of rice bran processed by dry heating and extrusion cooking. Int J Food Prop 7:603–614

    Article  CAS  Google Scholar 

  • Spitzer P, Fisicaro P, Seitz S, Champion R (2009) pH and electrolytic conductivity as parameters to characterize bioethanol. Accredit Qual Assur 14:769–771

    Article  Google Scholar 

  • Srivastava S, Modi DR, Garg SK (1997) Production of ethanol from wood hydrolysate by yeasts. Bioresour Technol 60:263–265

    Article  CAS  Google Scholar 

  • Tahir A, Aftab M, Farasat T (2010) Effect of culture conditions on ethanol production by locally isolated S. cerevisiae. J App Pharm 3(2):72–78

    Google Scholar 

  • Talarico LA, Gil MA, Yamano LP, Ingram L, Maupin JA (2005) Construction and expression of ethanol production in Gram positive bacteria. Appl Microbiol Bioetchnol 151:4023–4031

    CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evolut 24:1596–1599

    Article  CAS  Google Scholar 

  • Tiwari KL, Jadhav SK, Tiwari S (2010) The effect of temperature variation in the bioethanol production process. Bioprocess J 9(1):53–54

    Article  Google Scholar 

  • Tiwari KL, Jadhav SK, Tiwari ST (2011) Studies of bioethanol from some carbohydrate sources by gram positive bacteria. J Sustain Energy Environ 2:141–144

    Google Scholar 

  • Tiwari S, Jadhav SK, Tiwari KL (2012) Production of bioethanol From Jatropha oil cake. Researcher 4(7):7–10

    Google Scholar 

  • Tiwari S, Jadhav SK, Sharma M, Tiwari KL (2014) Fermentation of waste fruits for bioethanol production. Asian J Biol Sci. doi:10.3923/ajbs.2014

    Google Scholar 

  • Tofighi A, Azin M, Mazaheri AM, Assadi rad MHA, Nejadsattari T, Fallahian MR (2010) Inhibitory effect of high concentrations of Furfural on industrial strain of Saccharomyces cerevisiae. Int J Environ Res 4(1):137–142

    CAS  Google Scholar 

  • Yadav JB (2003) Advanced practical, physical chemistry. Goel publication house. Krishna Prakashan Media (P) Ltd., Meerut, pp 52–56

Download references

Acknowledgments

Author is grateful to Head, School of Studies in Biotechnology, Pt. Ravishankar Shukla University Raipur, Chhattisgarh, India for providing research facilities and valuable guidance for research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Jadhav.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tiwari, S., Jadhav, S.K. & Tiwari, K.L. Bioethanol production from rice bran with optimization of parameters by Bacillus cereus strain McR-3. Int. J. Environ. Sci. Technol. 12, 3819–3826 (2015). https://doi.org/10.1007/s13762-014-0746-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-014-0746-1

Keywords

Navigation