Skip to main content
Log in

Improvement Trail on Recovery of Cadmium from Low-Grade Sulfide Ore Through Bioleaching Using Acidithiobacillus ferrooxidans

  • Original Contribution
  • Published:
Journal of The Institution of Engineers (India): Series D Aims and scope Submit manuscript

Abstract

Recovery of cadmium from its low-grade sulfide ore (synthetic solutions) adopting bioleaching process involving the microbe, Acidithiobacillus ferrooxidans, under aerobic conditions is taken up. Leaching rate of cadmium from the ore solutions is examined at various initial loadings of ore solutions, bacterial densities and different pH units and at various temperatures. Bioleaching of cadmium was found to increase with an increase in time as well as solid loading but decrease with an increase in bacterial loading as well pH. However, in the case of temperatures, an initial increase followed by subsequent decrease was observed with rise in the parameter. Best conditions for bioleaching of cadmium employing A. ferrooxidans were deciphered to be a solid loading of at least 5 g at a microbial density of 5% at 30 °C temperature and 1.2 units of pH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J.D. Miller, J. Li, J.C. Davidtz, F. Vos, A review of pyrrhotite flotation chemistry in the processing PGM ores. Miner. Eng. 18, 855–865 (2005)

    Article  Google Scholar 

  2. F. Anjun, M. Shahid, A. Akcil, Biohydrometallurgy techniques of low grade ores: a review on black shale. Hydrometallurgy 117, 1–12 (2012)

    Article  Google Scholar 

  3. G.K. Bakyayita. Euilibrium and kinetic batch studies of cadmium and lead sorption using low cost biosorbants. TRITA-LWR Licentiate Thesis 14:04 (2014)

  4. B.S. Maluckov, The catalytic role of Acidithiobacillus ferrooxidans for metals extraction from mining-metallurgical resources. Biodivers. Int. J. 1(3), 109–119 (2017)

    Article  Google Scholar 

  5. H.R. Watling, The bioleaching of sulphide minerals with emphasis on copper sulphide: a review. Hydrometallurgy 84(1–2), 81–108 (2006)

    Article  Google Scholar 

  6. A. Schippers, Microbial organisms involved in bioleaching and nucleic acid-based molecular methods for identification and quantification, in Microbial processing of metal sulfates, ed. by R.E. Donati, W. Sand (Elsevier, Berlin, 2007), pp. 3–33

    Chapter  Google Scholar 

  7. J. Cui, L. Zhang, Metallurgical recovery of metals from electronic waste: a review. J. Hazard. Mater. 158, 228–256 (2008)

    Article  Google Scholar 

  8. N.Y. Sabra, H.C. Dubourguier, A. Benmimouna, M.N. Duval, S. Camuzeaux, T. Hamieh, Lithotrophic bacterial leaching of heavy metals from sediments dredged from Deule canal, France. Open Environ. Sci. 5, 18–29 (2011)

    Article  Google Scholar 

  9. A. Vardanyan, S. Stepanyan, N. Vardanyan, L. Markosyan, W. Sand, M. Vera, R. Zhang, Study and assessment of microbial communities in natural and commercial bioleaching systems. Miner. Eng. 81, 167–172 (2015)

    Article  Google Scholar 

  10. D. Borja, K.A. Nguyen, R.A. Silva, J.H. Park, V. Gupta, Y. Han, Y. Lee, H. Kim, Experiences and future challenges of bioleaching research in South Korea. Minerals 6(4), 128 (2016)

    Article  Google Scholar 

  11. A. Orell, F. Remansellez, R. Arancibia, C.A. Jerez, Molecular characterization of copper and cadmium resistance determinants in the biomining thermoacidophilic Archean Sulfolobus metallicus. Archaea (2013). https://doi.org/10.1155/2013/289236

    Article  Google Scholar 

  12. J.A.R. Chapana, H. Tributsch, Biochemistry of sulfur extraction in bio-corrosion of pyrite by Thobacillus ferrooxidans. Hydrometallurgy 59(2–3), 291–300 (2001)

    Article  Google Scholar 

  13. C.A. Solisio, A. Lodi, F. Veglio, Bioleaching of zinc and aluminum from industrial waste sludge by means of Thobacillus ferrooxidans. Waste Manag 22(6), 667–675 (2002)

    Article  Google Scholar 

  14. M.M. Vrvic, V. Dragutinovic, V. Matic, S. Spasic, O. Cvetkovic, D. Vitorovic, A kinetic study of the depyritization of oil shale HCl-kerogen concentrate by Thiobacillus ferrooxidans at different temperatures. J. Serb. Chem. Soc. 68(4–5), 417–423 (2003)

    Article  Google Scholar 

  15. S.K.M. Hossain, M. Das, K.M.M.S. Begum, N. Anantharaman, Bioleaching of zinc sulphide (ZnS) ore using Thiobacillus ferrooxidans. J. Inst. Eng. 85, 7–11 (2004)

    Google Scholar 

  16. S.K.M. Hossain, M. Das, S.H. Ibrahim, K.M.M.S. Begum, N. Anantharaman, Studies on biohydrometallurgical leaching of Iron sulfide ore using Thiobacillus ferrooxidans. Indian J. Chem. Technol. 11, 116–120 (2004)

    Google Scholar 

  17. S.D. Kim, J.E. Bae, H.S. Park, D.K. Cha, Bioleaching of cadmium and nickel from synthetic sediments by Acidithiobacillus ferrooxidans. Environ. Geochem. Health 27, 229–235 (2005)

    Article  Google Scholar 

  18. J.-C. Lee, B.D. Pandey, Bio-processing of solid wastes and secondary resources for metal extraction: a review. Waste Manag 32, 3–18 (2012)

    Article  Google Scholar 

  19. Q. Li, C. Wang, B. Li, C. Sun, F. Deng, C. Song, S. Wang, Isolation of Thiobacillus spp. and its application in the removal of heavy metals from activated sludge. Afr. J. Biotech. 11(97), 16336–16341 (2012)

    Google Scholar 

  20. J. Starosvetsky, U. Zukerman, R.H. Armon, A simple medium modification for isolation, growth and enumeration of Acidithiobacillus thiooxidans (syn. Thiobacillus thiooxidans) from water samples. J. Microbiol. Methods 92(2), 178–182 (2013)

    Article  Google Scholar 

  21. F.F. Hong, H. He, J.-Y. Liu, X.-X. Tao, L. Zheng, Y.-D. Zhao, Comparison analysis of coal biodesulfurization and coal’s pyrite bioleaching with Acidithiobacilus ferroxidans. Sci. World J. (2013). https://doi.org/10.1155/2013/1849-1864

    Article  Google Scholar 

  22. I.M. Sur, V. Micle, T. Gabor, Heavy metals removal by bioleaching using Thiobacillus ferrooxidans. Rom. Biotechnol. Lett. 5, 8 (2017)

    Google Scholar 

  23. M. Chen, Characterization and localized insight into leaching of sulphide minerals. in 22nd International Biohydrometallurgy Symposium, 2427 September 2017, T U BergakademieFrieberg, Saxony, Germany

  24. P. Norris, Progress in biohydrometallurgy over the last thirty years? in 22nd International Biohydrometallurgy Symposium, 2427 September 2017, T U Bergakademie Frieberg, Saxony, Germany (2017)

  25. O. Velgosova, J. Kadukova, R. Marcincakova, P. Palfy, J. Trpcevska, Influence of H2SO4 and ferric iron on Cd bioleaching from spent Ni-Cd batteries. Waste Manag 33, 456–461 (2013)

    Article  Google Scholar 

  26. O. Velgosova, J. Kadukova, R. Marcincakova, A. Mrazikova, L. Frohlich, The role of main leaching agents responsible for Ni bioleaching from spent Ni-Cd batteries. Sep. Sci. Technol. 49(3), 438–444 (2014)

    Article  Google Scholar 

  27. Y. Deng, X. Liu, Bioleaching of cadmium from contaminated paddy fields by consortium of autotrophic and individual cadmium tolerant bacteria, in 22nd International Biohydrometallurgy Symposium, 2427 September 2017, T U Bergakademie Frieberg, Saxony, Germany (2017)

  28. O.H. Lowry, N.J. Rosebrough, A.L. Farr, R.J. Randall, Protein measurement with Folin-phenol reagents. J. Biol. Chem. 193(1), 265–275 (1951)

    Google Scholar 

  29. H.-S. Lu, C.-W. Chiu, Y.-C. Cheng, The effect of metabolites from the indigenous Acidithiobacillus thiooxidans and temperature on the bioleaching of cadmium from soil. Biotechnol. Bioeng. (2003). https://doi.org/10.1002/bit.10714

    Article  Google Scholar 

  30. L. Xia, C. Yin, S. Dai, G. Qiu, X. Chen, J. Liu, Bioleaching of chalcopyrite concentrate using Leptospirillumferriphilum, Acidithiobacillus ferrooxidans and Acidithiobacillusthiooxidans in a continuous bubble column reactor. J. Ind. Microbiol. Biotechnol. 37(3), 289–295 (2010)

    Article  Google Scholar 

  31. W. An-na, Z. Yan-fei, Z. Chun-li, D. Yun-Jie, L. Yuan-dong, Z. Jia, G. Guo-hua, L. Jian-she, Purification and enzymatic characteristics of cysteine desulfurase IscS, in Acidithiobacillus ferrooxidans ATCC 23270. Trans. Nonferr. Metall. Soc. 18(6), 1450–1457 (2008)

    Article  Google Scholar 

  32. K. Bosecker, Bioleaching: metal solubilization by microorganisms. FEMS Microbiol. Rev. 20, 591–604 (1997)

    Article  Google Scholar 

  33. A.E. Torma, The role of Thiobacillus ferrooxidans in hydrometallurgical processes. Adv. Biochem. Eng. 6, 1–37 (1977)

    Google Scholar 

  34. M.K. Ghosh, L.B. Sukla, V.N. Misra, Cobalt and zinc extraction from Sikkim complex sulphide concentrate. Trans. Indian Inst. Met. 57(6), 617–621 (2004)

    Google Scholar 

  35. S.-Y. Shia, Z.-H. Fang, J.-R. Ni, Comparative study on the bioleaching of zinc sulphides. Process Biochem. 41(2), 438–446 (2006)

    Article  Google Scholar 

  36. E.R. Donati, S. Porro, P.H. Tedesco, Direct and indirect mechanisms in the bacterial leaching of covelite. Biotech. Lett. 10, 889–894 (1988)

    Article  Google Scholar 

  37. R. Tichy, P. Lens, J.T.C. Grotenhuis, P. Bos, Solid-state reduced sulphur compounds: environmental aspects and bioremediation. Crit. Rev. Environ. Sci. Technol. 28(1), 1–40 (1998)

    Article  Google Scholar 

  38. A.K. Muller, K. Westergaard, S. Christensen, S.J. Sorensen, The effect of long term mercury pollution on the soil microbial community. FEMS Microbial Ecol. 36, 11–19 (2001)

    Article  Google Scholar 

  39. D.B. Johnson, Biodiversity and interactions of acidophiles: key to understanding and optimizing microbial processing of ores and concentrates. Trans. Nonferrous Met. Soc. China 18(6), 1367–1373 (2008)

    Article  Google Scholar 

  40. J.D. Huang, Y.P. Tim, Bio-hydroleaching of Nickel-Cadmium batteries. NUROP Congress Paper, 6 pp, (2009). http://www.nus.edu.sg/nurop/2009/FoE/U059236R.PDF

  41. N. Mathiyazhagan, D. Natarajan, Bioremediation of effluents from Manesite and Bauxite mines using Thiobacillus spp. and Pseudomonas spp. J. Bioremediat. Biodegrad. 2, 115 (2011). https://doi.org/10.4172/2155-6199.1000115

    Article  Google Scholar 

  42. C.-Y. Park, S.-O. Kim, B.-J. Kim, Bioleaching of galena by indigenous bacteria at room temperature. J. Mineral. Soc. Korea 23, 331–341 (2010)

    Google Scholar 

  43. Cheong K.-H. ParkC-Y, B.-J. Kim, H. Wi, Y.-G. Lee, The corrosion and the enhance of bioleaching for galena by moderate thermophilic indigenous bacteria. J. Korean Soc. Mineral Energy Resour. Eng. 48, 11–24 (2011)

    Article  Google Scholar 

  44. L. Zhao, X.H. Wang, N.W. Zhu, Simultaneous metals leaching and microbial production of sulphuric acid by sewage sludge: effect of sludge solids concentration. Environ. Eng. 25(8), 1167–1174 (2008)

    Article  Google Scholar 

  45. M. Sethurajan, Metallurgical sludges, bio/leaching and heavy metals recovery (Zn, Cu). Environmental Engineering, Universite’ Paris-Est, 2015, English, < NNT: 2015PESC1202 > , < tel-01407248 > (2015)

Download references

Acknowledgements

Authors are thankful to the Institute of Microbial Technology, CSIR, Chandigarh for providing the microbes and laboratory support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. V. S. Sarma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarma, G.V.S., Raju, G.M.J., Rao, E.N.D. et al. Improvement Trail on Recovery of Cadmium from Low-Grade Sulfide Ore Through Bioleaching Using Acidithiobacillus ferrooxidans. J. Inst. Eng. India Ser. D 99, 217–223 (2018). https://doi.org/10.1007/s40033-018-0165-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40033-018-0165-4

Keywords

Navigation