Skip to main content
Log in

Large damping-like spin–orbit torque in a ferromagnet/topological insulator bilayer from localized interfacial states

  • Original Paper - Condensed Matter
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

We calculate the electric field-induced damping-like spin–orbit torque in a ferromagnetic metal/topological insulator bilayer using the tight-binding method and the Kubo formula. The effective damping-like spin Hall conductivity converted from the spin accumulation in a ferromagnetic metal is comparable to the reported experimental values. We find that hybridized states emerge at the interface between a ferromagnetic metal and a topological insulator and these states are crucial for the large damping-like spin Hall conductivity. Our result provides one possible way to explain experimentally reported large damping-like spin–orbit torque in a ferromagnetic metal/topological insulator bilayer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. I.M. Miron, G. Gaudin, S. Auffret, B. Rodmacq, A. Schuhl, S. Pizzini, J. Vogel, P. Gambardella, Nat. Mater. 9, 230 (2010). https://doi.org/10.1038/nmat2613

    Article  ADS  Google Scholar 

  2. L. Liu, O.J. Lee, T.J. Gudmundsen, D.C. Ralph, R.A. Buhrman, Phys. Rev. Lett. 109, 096602 (2012). https://doi.org/10.1103/PhysRevLett.109.096602

    Article  ADS  Google Scholar 

  3. L. Liu, C.-F. Pai, Y. Li, H.W. Tseng, D.C. Ralph, R.A. Buhrman, Science 336, 555 (2012) https://doi.org/10.1126/science.1218197https://www.science.org/doi/pdf/10.1126/science.1218197

  4. K.-W. Kim, S.-M. Seo, J. Ryu, K.-J. Lee, H.-W. Lee, Phys. Rev. B 85, 180404 (2012). https://doi.org/10.1103/PhysRevB.85.180404

    Article  ADS  Google Scholar 

  5. P.M. Haney, H.-W. Lee, K.-J. Lee, A. Manchon, M.D. Stiles, Phys. Rev. B 87, 174411 (2013). https://doi.org/10.1103/PhysRevB.87.174411

    Article  ADS  Google Scholar 

  6. P.M. Haney, H.-W. Lee, K.-J. Lee, A. Manchon, M.D. Stiles, Phys. Rev. B 88, 214417 (2013). https://doi.org/10.1103/PhysRevB.88.214417

    Article  ADS  Google Scholar 

  7. G. Yu, P. Upadhyaya, Y. Fan, J.G. Alzate, W. Jiang, K.L. Wong, S. Takei, S.A. Bender, L.-T. Chang, Y. Jiang, M. Lang, J. Tang, Y. Wang, Y. Tserkovnyak, P.K. Amiri, K.L. Wang, Nat. Nanotechnol. 9, 548 (2014). https://doi.org/10.1038/nnano.2014.94

    Article  ADS  Google Scholar 

  8. K. Garello, C.O. Avci, I.M. Miron, M. Baumgartner, A. Ghosh, S. Auffret, O. Boulle, G. Gaudin, P. Gambardella, Appl. Phys. Lett. 105, 212402 (2014)

    Article  ADS  Google Scholar 

  9. J. Sinova, S.O. Valenzuela, J. Wunderlich, C.H. Back, T. Jungwirth, Rev. Mod. Phys. 87, 1213 (2015). https://doi.org/10.1103/RevModPhys.87.1213

    Article  ADS  Google Scholar 

  10. T. Shiino, S.-H. Oh, P.M. Haney, S.-W. Lee, G. Go, B.-G. Park, K.-J. Lee, Phys. Rev. Lett. 117, 087203 (2016). https://doi.org/10.1103/PhysRevLett.117.087203

    Article  ADS  Google Scholar 

  11. K. Garello, I.M. Miron, C.O. Avci, F. Freimuth, Y. Mokrousov, S. Blügel, S. Auffret, O. Boulle, G. Gaudin, P. Gambardella, Nat. Nanotechnol. 8, 587 (2013). https://doi.org/10.1038/nnano.2013.145

    Article  ADS  Google Scholar 

  12. H. Kurebayashi, J. Sinova, D. Fang, A.C. Irvine, T.D. Skinner, J. Wunderlich, V. Novák, R.P. Campion, B.L. Gallagher, E.K. Vehstedt, L.P. Zârbo, K. Výborný, A.J. Ferguson, T. Jungwirth, Nat. Nanotechnol. 9, 211 (2014). https://doi.org/10.1038/nnano.2014.15

    Article  ADS  Google Scholar 

  13. F. Freimuth, S. Blügel, Y. Mokrousov, Phys. Rev. B 90, 174423 (2014). https://doi.org/10.1103/PhysRevB.90.174423

    Article  ADS  Google Scholar 

  14. K.-W. Kim, K.-J. Lee, J. Sinova, H.-W. Lee, M.D. Stiles, Phys. Rev. B 96, 104438 (2017). https://doi.org/10.1103/PhysRevB.96.104438

    Article  ADS  Google Scholar 

  15. R. Ramaswamy, J.M. Lee, K. Cai, H. Yang, Appl. Phys. Rev. 5, 031107 (2018). https://doi.org/10.1063/1.5041793

    Article  ADS  Google Scholar 

  16. F. Mahfouzi, N. Kioussis, Phys. Rev. B 97, 224426 (2018). https://doi.org/10.1103/PhysRevB.97.224426

    Article  ADS  Google Scholar 

  17. A. Manchon, J. Železný, I.M. Miron, T. Jungwirth, J. Sinova, A. Thiaville, K. Garello, P. Gambardella, Rev. Mod. Phys. 91, 035004 (2019). https://doi.org/10.1103/RevModPhys.91.035004

    Article  ADS  Google Scholar 

  18. A.R. Mellnik, J.S. Lee, A. Richardella, J.L. Grab, P.J. Mintun, M.H. Fischer, A. Vaezi, A. Manchon, E.A. Kim, N. Samarth, D.C. Ralph, Nature 511, 449 (2014). https://doi.org/10.1038/nature13534

    Article  ADS  Google Scholar 

  19. Y. Fan, P. Upadhyaya, X. Kou, M. Lang, S. Takei, Z. Wang, J. Tang, L. He, L.-T. Chang, M. Montazeri, G. Yu, W. Jiang, T. Nie, R.N. Schwartz, Y. Tserkovnyak, K.L. Wang, Nat. Mater. 13, 699 (2014). https://doi.org/10.1038/nmat3973

    Article  ADS  Google Scholar 

  20. Y. Wang, P. Deorani, K. Banerjee, N. Koirala, M. Brahlek, S. Oh, H. Yang, Phys. Rev. Lett. 114, 257202 (2015). https://doi.org/10.1103/PhysRevLett.114.257202

    Article  ADS  MathSciNet  Google Scholar 

  21. N.H.D. Khang, Y. Ueda, P.N. Hai, Nat. Mater. 17, 808 (2018). https://doi.org/10.1038/s41563-018-0137-y

    Article  ADS  Google Scholar 

  22. Y. Wang, D. Zhu, Y. Wu, Y. Yang, J. Yu, R. Ramaswamy, R. Mishra, S. Shi, M. Elyasi, K.-L. Teo, Y. Wu, H. Yang, Nat. Commun. 8, 1364 (2017). https://doi.org/10.1038/s41467-017-01583-4

    Article  ADS  Google Scholar 

  23. J. Han, A. Richardella, S.A. Siddiqui, J. Finley, N. Samarth, L. Liu, Phys. Rev. Lett. 119, 077702 (2017). https://doi.org/10.1103/PhysRevLett.119.077702

    Article  ADS  Google Scholar 

  24. M. Dc, R. Grassi, J.-Y. Chen, M. Jamali, D. ReifsnyderHickey, D. Zhang, Z. Zhao, H. Li, P. Quarterman, Y. Lv, M. Li, A. Manchon, K.A. Mkhoyan, T. Low, J.-P. Wang, Nat. Mater. 17, 800 (2018). https://doi.org/10.1038/s41563-018-0136-z

    Article  ADS  Google Scholar 

  25. C. Şahin, M.E. Flatté, Phys. Rev. Lett. 114, 107201 (2015). https://doi.org/10.1103/PhysRevLett.114.107201

    Article  ADS  Google Scholar 

  26. S. Ghosh, A. Manchon, Phys. Rev. B 97, 134402 (2018). https://doi.org/10.1103/PhysRevB.97.134402

    Article  ADS  Google Scholar 

  27. S.M. Farzaneh, S. Rakheja, Phys. Rev. Mater. 4, 114202 (2020). https://doi.org/10.1103/PhysRevMaterials.4.114202

    Article  Google Scholar 

  28. K. Kondou, R. Yoshimi, A. Tsukazaki, Y. Fukuma, J. Matsuno, K.S. Takahashi, M. Kawasaki, Y. Tokura, Y. Otani, Nat. Phys. 12, 1027 (2016). https://doi.org/10.1038/nphys3833

    Article  Google Scholar 

  29. I. Garate, M. Franz, Phys. Rev. Lett. 104, 146802 (2010). https://doi.org/10.1103/PhysRevLett.104.146802

    Article  ADS  Google Scholar 

  30. A. Sakai, H. Kohno, Phys. Rev. B 89, 165307 (2014). https://doi.org/10.1103/PhysRevB.89.165307

    Article  ADS  Google Scholar 

  31. F. Mahfouzi, N. Nagaosa, B.K. Nikolić, Phys. Rev. B 90, 115432 (2014). https://doi.org/10.1103/PhysRevB.90.115432

    Article  ADS  Google Scholar 

  32. F. Mahfouzi, B.K. Nikolić, N. Kioussis, Phys. Rev. B 93, 115419 (2016). https://doi.org/10.1103/PhysRevB.93.115419

    Article  ADS  Google Scholar 

  33. M.H. Fischer, A. Vaezi, A. Manchon, E.-A. Kim, Phys. Rev. B 93, 125303 (2016). https://doi.org/10.1103/PhysRevB.93.125303

    Article  ADS  Google Scholar 

  34. P.B. Ndiaye, C.A. Akosa, M.H. Fischer, A. Vaezi, E.-A. Kim, A. Manchon, Phys. Rev. B 96, 014408 (2017). https://doi.org/10.1103/PhysRevB.96.014408

    Article  ADS  Google Scholar 

  35. W. Wang, T. Wang, V.P. Amin, Y. Wang, A. Radhakrishnan, A. Davidson, S.R. Allen, T.J. Silva, H. Ohldag, D. Balzar, B.L. Zink, P.M. Haney, J.Q. Xiao, D.G. Cahill, V.O. Lorenz, X. Fan, Nat. Nanotechnol. 14, 819 (2019). https://doi.org/10.1038/s41565-019-0504-0

    Article  ADS  Google Scholar 

  36. D. Go, H.-W. Lee, Phys. Rev. Res. 2, 013177 (2020). https://doi.org/10.1103/PhysRevResearch.2.013177

    Article  Google Scholar 

  37. K. Kobayashi, Phys. Rev. B 84, 205424 (2011). https://doi.org/10.1103/PhysRevB.84.205424

    Article  ADS  Google Scholar 

  38. J. Zhang, J.P. Velev, X. Dang, E.Y. Tsymbal, Phys. Rev. B 94, 014435 (2016). https://doi.org/10.1103/PhysRevB.94.014435

    Article  ADS  Google Scholar 

  39. Y.-T. Hsu, K. Park, E.-A. Kim, Phys. Rev. B 96, 235433 (2017). https://doi.org/10.1103/PhysRevB.96.235433

    Article  ADS  Google Scholar 

  40. Y. Zhang, K. He, C.-Z. Chang, C.-L. Song, L.-L. Wang, X. Chen, J.-F. Jia, Z. Fang, X. Dai, W.-Y. Shan, S.-Q. Shen, Q. Niu, X.-L. Qi, S.-C. Zhang, X.-C. Ma, Q.-K. Xue, Nat. Phys. 6, 584 (2010). https://doi.org/10.1038/nphys1689

    Article  Google Scholar 

  41. C.S. Ho, Y. Wang, Z.B. Siu, S.G. Tan, M.B.A. Jalil, H. Yang, Sci. Rep. 7, 792 (2017). https://doi.org/10.1038/s41598-017-00911-4

    Article  ADS  Google Scholar 

Download references

Acknowledgements

S.S. and H.W.L. were supported by the Samsung Science and Technology Foundation (Grant No. BA-1501-51).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Seungju Shin or Hyun-Woo Lee.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shin, S., Lee, HW. Large damping-like spin–orbit torque in a ferromagnet/topological insulator bilayer from localized interfacial states. J. Korean Phys. Soc. 80, 241–246 (2022). https://doi.org/10.1007/s40042-021-00378-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-021-00378-7

Keywords

Navigation