Skip to main content
Log in

Central limit theorems for stochastic wave equations in dimensions one and two

  • Published:
Stochastics and Partial Differential Equations: Analysis and Computations Aims and scope Submit manuscript

Abstract

Fix \(d\in \{1,2\}\), we consider a d-dimensional stochastic wave equation driven by a Gaussian noise, which is temporally white and colored in space such that the spatial correlation function is integrable and satisfies Dalang’s condition. In this setting, we provide quantitative central limit theorems for the spatial average of the solution over a Euclidean ball, as the radius of the ball diverges to infinity. We also establish functional central limit theorems. A fundamental ingredient in our analysis is the pointwise \(L^p\)-estimate for the Malliavin derivative of the solution, which is of independent interest. This paper is another addendum to the recent research line of averaging stochastic partial differential equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Note that \(\sigma _R\) depends on the parameter t and the conclusion “\(\sigma _R>0\) for each \(R>0\)” is ensured by condition (C3). The proof of this part is omitted here and can be done by following the same arguments as in [8, Lemma 3.4].

References

  1. Balan, R.M., Quer-Sardanyons, L., Song, J.: Existence of density for the stochastic wave equation with space-time homogeneous Gaussian noise. Electron. J. Probab. 24(106), 1–43 (2019). https://doi.org/10.1214/19-EJP363

    Article  MathSciNet  MATH  Google Scholar 

  2. Bolaños Guerrero, R., Nualart, D., Zheng, G.: Averaging 2D stochastic wave equation. Electron. J. Probab. 26(102), 1–32 (2021). https://doi.org/10.1214/21-EJP672

    Article  MathSciNet  MATH  Google Scholar 

  3. Chen, L., Khoshnevisan, D., Nualart, D., Pu, F.: Spatial ergodicity for SPDEs via Poincaré-type inequalities. (2019). https://arxiv.org/abs/1907.11553

  4. Chen, L., Ksoshnevisan, D., Nualart, D., Pu, F.: Poincaré inequality, and central limit theorems for parabolic stochastic partial differential equations. (2019). https://arxiv.org/abs/1912.01482

  5. Chen, L., Ksoshnevisan, D., Nualart, D., Pu, F.: Central limit theorems for spatial averages of the stochastic heat equation via Maliavin-Stein method. (2020). https://arxiv.org/pdf/2008.02408

  6. Dalang, R.C.: Extending the martingale measure stochastic integral with applications to spatially homogeneous SPDEs. Electron. J. Probab. 4(6), 29 (1999). https://doi.org/10.1214/EJP.v4-43

    Article  MATH  Google Scholar 

  7. Dalang, R. C.: The Stochastic wave equation. In: Khoshnevisan D., Rassoul-Agha F. (eds) A Minicourse on Stochastic Partial Differential Equations. Lecture Notes in Mathematics, vol 1962. Springer, Berlin, Heidelberg (2009) https://doi.org/10.1007/978-3-540-85994-9

  8. Delgado-Vences, F., Nualart, D., Zheng, G.: A Central Limit Theorem for the stochastic wave equation with fractional noise. Ann. Inst. Henri Poincaré Probab. Stat. 56(4), 3020–3042 (2020). https://doi.org/10.1214/20-AIHP1069

    Article  MathSciNet  MATH  Google Scholar 

  9. Gaveau, B., Trauber, P.: L’intégrale stochastique comme opérateur de divergence dans l’ founctionnel. J. Funct. Anal. 46, 230–238 (1982). https://doi.org/10.1016/0022-1236(82)90036-2

  10. Huang, J., Nualart, D., Viitasaari, L.: A central limit theorem for the stochastic heat equation. Stochast. Process. Appl. 130(12), 7170–7184 (2020). https://doi.org/10.1016/j.spa.2020.07.010

    Article  MathSciNet  MATH  Google Scholar 

  11. Huang, J., Nualart, D., Viitasaari, L., Zheng, G.: Gaussian fluctuations for the stochastic heat equation with colored noise. Stochast. PDE Anal. Comput. 8, 402–421 (2020). https://doi.org/10.1007/s40072-019-00149-3

    Article  MathSciNet  MATH  Google Scholar 

  12. Khoshnevisan, D.: Analysis of Stochastic Partial Differential Equations. CBMS Regional Conference Series in Mathematics, 119. Published for the Conference Board of the Mathematical Sciences, Washington DC; by the American Mathematical Society, Providence, RI, 2014. viii+116 pp. MR-3222416. https://doi.org/10.1090/cbms/119

  13. Kunita, H.: Tightness of probability measures in \(D([0, T];C)\) and \(D([0, T]; D)\). J. Math. Soc. Jpn. 38, 2 (1986). https://doi.org/10.2969/jmsj/03820309

    Article  MathSciNet  MATH  Google Scholar 

  14. Millet, A., Sanz-Solé, M.: A stochastic wave equation in two dimension: smoothness of the law. Ann. Probab. 27(2), 803–844 (1999). https://doi.org/10.1214/aop/1022677387

    Article  MathSciNet  MATH  Google Scholar 

  15. Nourdin, I., Peccati, G.: Normal approximations with Malliavin calculus. From Stein’s method to universality. Cambridge Tracts in Mathematics, 192. Cambridge University Press, Cambridge, pp. xiv+239 (2012)

  16. Nualart, D.: The Malliavin calculus and related topics. Second edition. Probability and its Applications (New York). Springer-Verlag, Berlin, pp. xiv+382 (2006) . https://doi.org/10.1007/3-540-28329-3

  17. Nualart, D., Nualart, E.: Introduction to Malliavin Calculus IMS Textbooks. Cambridge University Press, Cambridge (2018). https://doi.org/10.1017/9781139856485

    Book  MATH  Google Scholar 

  18. Nualart, D., Pardoux, E.: Stochastic calculus with anticipating integrands. Probab. Theory Re. Fields 78, 535–581 (1988). https://doi.org/10.1007/BF00353876

    Article  MathSciNet  MATH  Google Scholar 

  19. Nualart, D., Zheng, G.: Averaging Gaussian functionals. Electron. J. Probab. 25(48), 1–54 (2020). https://doi.org/10.1214/20-EJP453

    Article  MathSciNet  MATH  Google Scholar 

  20. Walsh, J. B.: An Introduction to Stochastic Partial Differential Equations. In: École d’été de probabilités de Saint-Flour, XIV—1984, 265–439. Lecture Notes in Math. 1180, Springer, Berlin, (1986). https://doi.org/10.1007/BFb0074920

Download references

Acknowledgements

D. Nualart is supported by NSF Grant DMS 1811181. The authors are thankful to two anonymous referees for the comments and suggestions. The authors are also very grateful to Raluca M. Balan for sending a long list of comments that have improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangqu Zheng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nualart, D., Zheng, G. Central limit theorems for stochastic wave equations in dimensions one and two. Stoch PDE: Anal Comp 10, 392–418 (2022). https://doi.org/10.1007/s40072-021-00209-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40072-021-00209-7

Keywords

Mathematics Subject Classification

Navigation