Skip to main content
Log in

Adsorption behaviors of methylene blue onto tubular cadmium sulfide polycrystals

  • Original Article
  • Published:
International Nano Letters Aims and scope Submit manuscript

Abstract

The temporal evolution of methylene blue’s adsorption onto tubularly mesoporous CdS synthesized by templating the fibrous precursor of cadmium oleates is investigated using the batch experiment method. UV–visible measurements on the supernatants at λ = 665 nm reveal the adsorption of methylene blue at 25 and 5 °C exhibits the type IV isotherms, having the typical features of mesoporous materials, and the isotherm can be fitted by Freundlich and Langmuir equation for low and high ce, respectively. The adsorption enthalpy change H, which is estimated − 12 kJ/mol, reveals the H-bond existing between CdS and MB molecules. The first hour of contact has proved to be a quite rapid dynamics, and subsequently, the dye molecules go through a tardy process in 30–36 h to reach the equilibrium. The uptake of methylene blue by tubular CdS is interpreted by pseudo-second-order model better than by pseudo-first-order model, and the experimental data over the whole adsorption process can be described based on the intraparticle diffusion model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Di, T., Xu, Q., Ho, W., et al.: Review on metal sulphide-based Z-scheme photocatalysts. ChemCatChem 11, 1394–1411 (2019)

    CAS  Google Scholar 

  2. Lei, Y., Chen, Y., Yu, P., He, G., Zhu, Y., Chen, H.: Combination of α-Fe2O3, CdS and reduced graphene oxide: high performance and recyclable visible light photocatalysis. Appl. Organomet. Chem. 34, e5340 (2020)

    CAS  Google Scholar 

  3. Cheng, L., Xiang, Q., Liao, Y., Zhang, H.: CdS-based photocatalysts. Energy Environ. Sci. 11, 1362–1391 (2018)

    CAS  Google Scholar 

  4. Li, Q., Guan, Z., Wu, D., Zhao, X., Bao, S., Tian, B., Zhang, J.: Z-scheme BiOCl–Au–CdS heterostructure with enhanced sunlight driven photocatalytic activity in degrading water dyes and antibiotics. ACS Sustain. Chem. Eng. 5, 6958–6968 (2017)

    CAS  Google Scholar 

  5. Regulacio, M.D., Han, M.: Multinary I-III-VI2 and I-2-II-IV-VI4 semiconductor nanostructures for photocatalytic applications. Acc. Chem. Res. 49, 511–519 (2016)

    CAS  Google Scholar 

  6. Huang, Y., Sun, F., Wu, T., Wu, Q., Huang, Z., Su, H., Zhang, Z.: Photochemical preparation of CdS hollow microspheres at room temperature and their use in visible-light photocatalysis. J. Solid State Chem. 184, 644–648 (2011)

    CAS  Google Scholar 

  7. Huang, Y., Lu, Y., Lin, Y., Mao, Y., Ouyang, G., Liu, H., Zhang, S., Tong, Y.: Cerium-based hybrid nanorods for synergetic photothermocatalytic degradation of organic pollutants. J. Mater. Chem. A 6, 24740–24747 (2018)

    CAS  Google Scholar 

  8. Li, K., Lu, X., Zhang, Y., Liu, K., Huang, Y., Liu, H.: Bi3TaO7/Ti3C2 heterojunctions for enhanced photocatalytic removal of water-borne contaminants. Environ. Res. 185, 109409 (2020)

    CAS  Google Scholar 

  9. Liu, W., Wang, X., Yu, H., Yu, J.: Direct photoinduced synthesis of amorphous CoMoSx cocatalyst and its improved photocatalytic H2-evolution activity of CdS. ACS Sustain. Chem. Eng. 6, 12436–12445 (2018)

    CAS  Google Scholar 

  10. Di, T., Cheng, B., Ho, W., Yu, J., Tang, H.: Hierarchically CdS–Ag2S nanocomposites for efficient photocatalytic H2 production. Appl. Surf. Sci. 470, 196–204 (2018)

    Google Scholar 

  11. Wei, R., Huang, Z., Gu, G., Wang, Z., Zeng, L., Chen, Y., Liu, Z.: Dual-cocatalysts decorated rimous CdS spheres advancing highly-efficient visible-light photocatalytic hydrogen production. Appl. Catal. B Environ. 231, 101–107 (2018)

    CAS  Google Scholar 

  12. Santra, S., Yang, H., Holloway, P.H., Stanley, J.T., Mericle, R.A.: Synthesis of water-dispersible fluorescent, radio-opaque, and paramagnetic CdS: Mn/ZnS quantum dots: a multifunctional probe for bioimaging. J. Am. Chem. Soc. 127, 1656–1657 (2005)

    CAS  Google Scholar 

  13. Romeo, N., Bosio, A., Canevari, V., Podestà, A.: Recent progress on CdTe/CdS thin film solar cells. Sol. Energy 77, 795–801 (2004)

    CAS  Google Scholar 

  14. Huo, H., Xu, Z., Zhang, T., Xu, C.: Ni/CdS/TiO2 nanotube array heterostructures for high performance photoelectrochemical biosensing. J. Mater. Chem. A 3, 5882–5888 (2015)

    CAS  Google Scholar 

  15. Khallaf, H., Oladeji, I.O., Chow, L.: Optimization of chemical bath deposited CdS thin films using nitrilotriacetic acid as a complexing agent. Thin Solid Films 516, 5967–5973 (2008)

    CAS  Google Scholar 

  16. Hoseinzadeh, T., Solaymani, S., Kulesza, S., et al.: Microstructure, fractal geometry and dye-sensitized solar cells performance of CdS/TiO2 nanostructures. J. Electroanal. Chem. 830, 80–87 (2018)

    Google Scholar 

  17. Bessekhouad, Y., Chaoui, N., Trzpit, M., Ghazzal, N., Robert, D., Weber, J.V.: UV-Vis versus visible degradation of acid orange II in a coupled CdS/TiO2 semiconductors suspension. J. Photochem. Photobiol. A Chem. 2006(183), 218–224 (2006)

    Google Scholar 

  18. Chen, C.-C., Lin, J.-J.: Controlled growth of cubic cadmium sulfide nanoparticles using patterned self-assembled monolayers as a template. Adv. Mater. 13, 136–139 (2001)

    CAS  Google Scholar 

  19. Pinna, N., Weiss, K., Urban, J., Pileni, M.P.: Triangular CdS nanocrystals: structural and optical studies. Adv. Mater. 13, 261–264 (2001)

    CAS  Google Scholar 

  20. Huang, J., Xie, Y., Li, B., Liu, Y., Qian, Y., Zhang, S.: In-situ source-template-interface reaction route to semiconductor CdS submicrometer hollow spheres. Adv. Mater. 12, 808–811 (2000)

    CAS  Google Scholar 

  21. Yu, W.W., Peng, X.G.: Formation of high-quality CdS and other II–VI semiconductor nanocrystals in noncoordinating solvents: tunable reactivity of monomers. Angew. Chem. Int. Ed. 41, 2368–2371 (2002)

    CAS  Google Scholar 

  22. Warner, J.H., Tilley, R.D.: Synthesis and self-assembly of triangular and hexagonal CdS nanocrystals. Adv. Mater. 17, 2997–3001 (2005)

    CAS  Google Scholar 

  23. Pan, D.C., Ji, X.L., An, L.J., Lu, Y.F.: Observation of nucleation and growth of CdS nanocrystals in a two-phase system. Chem. Mater. 20, 3560–3566 (2008)

    CAS  Google Scholar 

  24. Huang, Z., Sun, F., Zhang, Y., Gu, K., Zou, X., Huang, Y., Wu, Q., Zhang, Z.: Temperature-assisted photochemical construction of CdS-based ordered porous films with photocatalytic activities on solution surfaces. J. Colloid Interface Sci. 356, 783–789 (2011)

    CAS  Google Scholar 

  25. Yang, J., Yu, J., Fan, J., Sun, D., Tang, W., Yang, X.: Biotemplated preparation of CdS nanoparticles/bacterial cellulose hybrid nanofibers for photocatalysis application. J. Hazard. Mater. 189, 377–383 (2011)

    CAS  Google Scholar 

  26. Wu, L., Yu, J.C., Fu, X.: Characterization and photocatalytic mechanism of nanosized CdS coupled TiO2 nanocrystals under visible light irradiation. J. Mol. Catal. A Chem. 244, 25–32 (2006)

    CAS  Google Scholar 

  27. Yuan, W., Zhang, Z., Cui, X., Liu, H., Tai, C., Song, Y.: Fabrication of hollow mesoporous CdS@TiO2@Au microspheres with high photocatalytic activity for hydrogen evolution from water under visible light. ACS Sustain. Chem. Eng. 6, 13766–13777 (2018)

    CAS  Google Scholar 

  28. Zhang, W.-M., Li, N., Tang, D.-H., Wang, Y.-Y.: Tubular CdS with mesoporous structure self-templated by cadmium complexes of oleate. Microporous Mesoporous Mater. 143, 249–251 (2011)

    CAS  Google Scholar 

  29. Langmuir, I.: The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 40, 1361–1403 (1918)

    CAS  Google Scholar 

  30. Chern, J.-M., Huang, S.-N.: Study of nonlinear wave propagation theory. 1. Dye adsorption by activated carbon. Ind. Eng. Chem. Res. 37, 253–257 (1998)

    CAS  Google Scholar 

  31. Jun, Y.W., Lee, S.M., Kang, N.J., Cheon, J.: Controlled synthesis of multi-armed CdS nanorod architectures using monosurfactant system. J. Am. Chem. Soc. 123, 5150–5151 (2001)

    CAS  Google Scholar 

  32. Niederdraenk, F., Seufert, K., Luczak, P., Kulkami, S.K., Chory, C., Neder, R.B., Kumpf, C.: Structure of small II–VI semiconductor nanoparticles: a new approach based on powder diffraction. Phys. Stat. Sol. C 4, 3234–3243 (2007)

    CAS  Google Scholar 

  33. Ayad, M.M., El-Nasr, A.A.: Adsorption of cationic dye (methylene blue) from water using polyaniline nanotubes base. J. Phys. Chem. C 114, 14377–14383 (2010)

    CAS  Google Scholar 

  34. Singh, K.P., Mohan, D., Sinha, S., Tondon, G.S., Gosh, D.: Color removal from wastewater using low-cost activated carbon derived from agricultural waste material. Ind. Eng. Chem. Res. 42, 1965–1976 (2003)

    CAS  Google Scholar 

  35. Sarma, J., Sarma, A., Bhattacharyya, K.G.: Biosorption of commercial dyes on azadirachta indica leaf powder: a case study with a basic dye Rhodamine B. Ind. Eng. Chem. Res. 47, 5433–5440 (2008)

    CAS  Google Scholar 

  36. Wang, P., Cao, M., Wang, C., Ao, Y., Hou, J., Qian, J.: Kinetics and thermodynamics of adsorption of methylene blue by a magnetic graphene–carbon nanotube composite. Appl. Suf. Sci. 290, 116–124 (2014)

    CAS  Google Scholar 

  37. Moradi, O., Fakhri, A., Adami, S., Adami, S.: Ethidium bromide by single-walled carbon nanotube and carboxylate group functionalized single-walled carbon nanotube. J. Colloid Interface Sci. 395, 224–229 (2013)

    CAS  Google Scholar 

  38. Konicki, W., Sibera, D., Mijowska, E., Lendzion-Bielun, Z., Narkiewicz, U.: Equilibrium and kinetic studies on acid dye Acid Red 88 adsorption by magnetic ZnFe2O4 spinel ferrite nanoparticles. J. Colloid Interface Sci. 398, 152–160 (2013)

    CAS  Google Scholar 

  39. Mckay, G., Blair, H.S., Gardner, J.: The adsorption of dyes in chitin. III. Intraparticle diffusion processes. J. Appl. Polym. Sci. 28, 1767–1778 (1983)

    CAS  Google Scholar 

  40. Doğan, M., Özademir, Y., Alkan, M.: Adsorption kinetics and mechanism of cationic methyl violet and methylene blue dyes onto sepiolite. Dyes Pigm. 75, 701–713 (2007)

    Google Scholar 

  41. Sun, Q., Yang, L.: The adsorption of basic dyes from aqueous solution on modified peat-resin particle. Water Res. 37, 1535–1544 (2003)

    CAS  Google Scholar 

  42. Kumar, K.V., Porkodi, K.: Mass transfer, kinetics and equilibrium studies for the biosorption of methylene blue using Paspalum notatum. J. Hazard. Mater. 146, 214–226 (2007)

    CAS  Google Scholar 

  43. Kumar, K.V., Ramamurthi, V., Sivanesan, S.: Modeling the mechanism involved during the sorption of methylene blue onto fly ash. J. Colloid Interface Sci. 284, 14–21 (2005)

    CAS  Google Scholar 

  44. Rodríguez, A., Ovejero, G., Mestanza, M., García, J.: Removal of dyes from wastewaters by adsorption on sepiolite and pansil. Ind. Eng. Chem. Res. 49, 3207–3216 (2010)

    Google Scholar 

Download references

Funding

Funding was provided by Doctorial Foundation of University of Jinan (B0416), National undergraduate innovation and entrepreneurship training program (201910427039).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Min Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 328 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, DQ., Wang, YS., Xie, ZX. et al. Adsorption behaviors of methylene blue onto tubular cadmium sulfide polycrystals. Int Nano Lett 10, 287–292 (2020). https://doi.org/10.1007/s40089-020-00316-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40089-020-00316-8

Keywords

Navigation