Skip to main content
Log in

Preparation and characterization of calcium oxide nanoparticles from marine molluscan shell waste as nutrient source for plant growth

  • Original Research
  • Published:
Journal of Nanostructure in Chemistry Aims and scope Submit manuscript

Abstract

Calcium (Ca) is one among the major essential nutrients for plant growth and development. It activates enzymes, nitrate uptake, plant biomass ratio, the rate of photosynthesis and increase metabolisms. In the present study, calcium carbonate (CaCO3) and calcium oxide (CaO) nanoparticles were prepared using three marine molluscan shells. The elemental composition of three molluscan shells (Lima lima, Lottioidea and Oliva reticularis) was analyzed using XRF. The physico-chemical characterization of raw shell powder (CaCO3) and CaO nanoparticles was carried out using TGA–DSC, XRD, FT-IR, HR-SEM and TEM. TGA–DSC, a major weight loss peak, has been identified for all the three shells at a temperature range of 650–850 °C indicated the formation of CaCO3 into CaO. The average size of the CaO nanoparticles of Lima lima, Lottioidea and Oliva reticularis were determined to be 29, 32 and 25 nm, respectively. The effects on the plant growth as a nutrient source revealed that the CaO synthesized at nanoscale from all the marine molluscan shells (Lima lima, Lottioidea and Oliva reticularis) at a concentration of 250 ppm have given higher radicle growth (9.52, 7.92 and 8.12 cm), germination (100, 100 and 100%), shoot length (12.48, 12.12 and 12.40 cm), root length (13.02, 12.80 and 12.24 cm) and vigor index (2550, 2492 and 2464) then CaCO3 and normal control. Among the marine molluscan shells, the CaCO3 and CaO synthesized from Lima lima have effected high level of radicle growth and seed quality parameters then Lottioidea and Oliva reticularis.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Jovic, M., Mandic, M., Sljivic-Ivanovic, M., Smiciklas, I.: Recent trends in application od shell waste from mariculture. Studia Marina 32, 47–62 (2019)

    Google Scholar 

  2. Hepler, P.K.: Calcium: a central regulator of plant growth and development. Plant Cell 17, 2142–2155 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Thor, K.: Calcium-nutrient and messenger. Front. Plant Sci. 10, 1–7 (2019)

    Article  Google Scholar 

  4. Usten, N.H., Yokas, A.L., Saygili, H.: Influence of potassium and calcium level on severity of tomato pith necrosis and yield of greenhouse tomatoes. ISHS Acta Horticul. 808, 345–350 (2006)

    Google Scholar 

  5. Rajjou, L., Duval, M., Gallardo, K., Catusse, J., Bally, J., Job, C., Job, D.: Seed germination and vigor. Annu. Rev. Plant Biol. 63, 507–533 (2012)

    Article  CAS  PubMed  Google Scholar 

  6. Chen, K., Arora, R.: Priming memory invokes seed stress-tolerance. Environ. Exp. Bot. 94, 33–45 (2013)

    Article  CAS  Google Scholar 

  7. Ibrahim, E.A.: Seed priming to alleviate salinity stress in germinating seeds. J. Plant Physiol. 192, 38–46 (2016)

    Article  CAS  PubMed  Google Scholar 

  8. Waqas, M., Korres, N.E., Khan, M.D., Nizami, A.S., Deeba, F., Ali, I., Hussain, H.: Advances in the concept and methods of seed priming. In: Hasanuzzaman, M., Fotopoulos, V. (eds.) Priming and pretreatment of seeds and seedlings. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-8625-1_2

    Chapter  Google Scholar 

  9. Horii, A., McCue, P., Shetty, K.: Seed vigor studies in corn, soybean and tomato in response to fish protein hydrolysates and consequences on phenolic-linked responses. Biores. Technol. 98, 2170–2177 (2007)

    Article  CAS  Google Scholar 

  10. Butler, L., Hay, F., Ellis, R., Smith, R., Murray, T.: Priming and re-drying improve the survival of mature seeds of Digitalis purpurea during storage. Ann. Bot. 103, 1261–1270 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hussain, S., Zheng, M., Khan, F., Khaliq, A., Fahad, S., Peng, S., Huang, J., Cui, K., Nie, L.: Benefits of rice seed priming are offset permanently by prolonged storage and the storage conditions. Sci. Rep. 5, 8101 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Morsi, M.A., Rajeh, A., Menazea, A.A.: Nanosecond laser-irradiation assisted the improvement of structural, optical and thermal properties of polyvinyl pyrrolidone/carboxymethyl cellulose blend filled with gold nanoparticles. J. Mater. Sci. Mater. Elec. 30, 2693–2705 (2019)

    Article  CAS  Google Scholar 

  13. Menazeaa, A.A., Ahmed, M.K.: Nanosecond laser ablation assisted the enhancement of antibacterial activity of copper oxide nanoparticles embedded though Polyethylene Oxide/ Polyvinyl pyrrolidone blend matrix. Radiat. Phy. Chem. 174, 108911 (2020)

    Article  CAS  Google Scholar 

  14. Menazea, A.A.: Pulsed laser ablation route assisted copper oxide nanoparticles doped in Polyethylene Oxide/Polyvinyl pyrrolidone blend for enhancement the electrical conductivity. J. Mol. Struc. 1207, 127807 (2020)

    Article  CAS  Google Scholar 

  15. Menazea, A.A., Ismail, A.M., Awwad, N.S., Ibrahium, H.A.: Physical characterization and antibacterial activity of PVA/Chitosan matrix doped by selenium nanoparticles prepared via one-pot laser ablation route. J. Mater. Res. Technol. 9, 9598–9606 (2020)

    Article  CAS  Google Scholar 

  16. Tommalieh, M.J., Ibrahium, H.A., Awwad, N.S., Menazea, A.A.: Gold nanoparticles doped Polyvinyl Alcohol/Chitosan blend via laser ablation for electrical conductivity enhancement. J. Mol. Struc. 1221, 128814 (2020)

    Article  CAS  Google Scholar 

  17. Ahmed, M.K., Menazea, A.A., Abdelghany, A.M.: Blend biopolymeric nanofibrous scaffolds of cellulose acetate/ε-polycaprolactone containing metallic nanoparticles prepared by laser ablation for wound disinfection applications. Int. J. Biol. Macromol. 155, 636–644 (2020)

    Article  CAS  PubMed  Google Scholar 

  18. Menazea, A.A., Ahmed, M.K.: Wound healing activity of Chitosan/Polyvinyl Alcohol embedded by gold nanoparticles prepared by nanosecond laser ablation. J. Mol. Struc. 1217, 128401 (2020)

    Article  CAS  Google Scholar 

  19. Govindaraju, K., Vasantharaja, R., Uma Suganya, K.S., Anbarasu, S., Revathy, K., Pugazhendhi, A., Karthickeyan, D., Singaravelu, G.: Unveiling the anticancer and antimycobacterial potentials of bioengineered gold nanoparticles. Proc. Biochem. 96, 213–219 (2020)

    Article  CAS  Google Scholar 

  20. Govindaraju, K., Dilip Itroutwar, P., Veeramani, V., Ashokkumar, T., Tamilselvan, S.: Application of nanotechnology in diagnosis and disease management of white spot syndrome virus (WSSV) in Aquaculture. J. Clust. Sci. 1–9 (2019)

  21. Govindaraju, K., Tamilselvan, S., Kannan, M., Kathickeyan, D., Shkolnik, D., Chaturvedi, S.: Nano-micronutrients [γ-Fe2O3 (iron) and ZnO (zinc)]: green preparation, characterization, agro-morphological characteristics and crop productivity studies in two crops (rice and maize). New J. Chem. 44, 11373–11383 (2020)

    Article  Google Scholar 

  22. Prerna, D.I., Govindaraju, K., Vasantharaja, R., Kannan, M., Subramanian, K.S.: Effects of biogenic zinc oxide nanoparticles on seed germination and seedling vigor of maize (Zea mays). Biocat. Agricult. Biotechnol. 29, 101778 (2020)

    Article  Google Scholar 

  23. Menazea, A.A., Ismail, A.M., Elashmawi, I.S.: The role of Li4Ti5O12 nanoparticles on enhancement the performance of PVDF/PVK blend for lithium-ion batteries. J. Mater. Res. Technol. 9, 5689–5698 (2020)

    Article  CAS  Google Scholar 

  24. Mostafa, A.M., Menazea, A.A.: Polyvinyl Alcohol/Silver nanoparticles film prepared via pulsed laser ablation: an eco-friendly nano-catalyst for 4-nitrophenol degradation. J. Mol. Struc. 1212, 128125 (2020)

    Article  CAS  Google Scholar 

  25. Dasgupta, N., Ranjan, S., Ramalingam, C.: Applications of nanotechnology in agriculture and water quality management. Environ. Chem. Lett. 15, 591–605 (2017)

    Article  CAS  Google Scholar 

  26. Kasote, D.M., Lee, J., Jayaprakasha, G.K., Patil, B.S.: Seed priming with iron oxide nanoparticles modulate antioxidant potential and defense linked hormones in watermelon seedlings. ACS Sustain. Chem. Eng. 7, 5142–5151 (2019)

    Article  CAS  Google Scholar 

  27. Zheng, L., Hong, F., Lu, S., Liu, C.: Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach. Biol. Trace Elem. Res. 104, 83–91 (2005)

    Article  CAS  PubMed  Google Scholar 

  28. Srivastava, G., Das, C.K., Das, A., Singh, S.K., Roy, M., Kim, H., Sethy, N., Kumar, A., Sharma, R.K., Singh, S.K., Philip, D., Das, M.: Seed treatment with iron pyrite (FeS2) nanoparticles increases the production of spinach. RSC Adv. 4, 58495–58504 (2014)

    Article  CAS  Google Scholar 

  29. Ratnikova, T.A., Podila, R., Rao, A.M., Taylor, A.G.: Tomato seed coat permeability to selected carbon nanomaterials and enhancement of germination and seedling growth. Sci. World J. 419215 (2015)

  30. Mohamed, A.K.S.H., Qayyum, M.F., Abdul-Hadi, A.M., Rehman, R.A., Ali, S., Rizwan, M.: Interactive effect of salinity and silver nanoparticles on photosynthetic and biochemical parameters of wheat. Arch. Agron. Soil Sci. 1–12 (2017)

  31. Taran, N., Storozhenko, V., Svietlova, N., Batsmanova, L., Shvartau, V., Kovalenko, M.: Effect of zinc and copper nanoparticles on drought resistance of wheat seedlings. Nanoscale Res. Lett. 12, 60 (2017)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Latef, A.A.H.A., Alhmad, M.F.A., Abdelfattah, K.E.: The possible roles of priming with ZnO nanoparticles in mitigation of salinity stress in lupine (Lupinus termis) plants. J. Plant Growth Regul. 36, 60–70 (2017)

    Article  CAS  Google Scholar 

  33. Raja, K., Sowmya, R., Sudhagar, R., Moorthy, P.S., Govindaraju, K., Subramanian, K.S.: Biogenic ZnO and Cu nanoparticles to improve seed germination quality in black gram (Vigna mungo). Mater. Lett. 235, 164–167 (2019)

    Article  CAS  Google Scholar 

  34. Prerna, D.I., Govindaraju, K., Tamilselvan, S., Kannan, M., Raja, K., Subramanian, K.S.: 2020 Seaweed based biogenic ZnO nanoparticles for improving agro-morphological characteristics of rice (Oryza sativa L.). J. Plant Growth Regul. 39, 717–728 (2020)

    Article  CAS  Google Scholar 

  35. Dileep Kumar, G., Raja, K., Natarajan, N., Govindaraju, K., Subramanian, K.S.: Invigouration treatment of metal and metal oxide nanoparticles for improving the seed quality of aged chilli seeds (Capsicum annum L.). Mater. Chem. Phys. 242, 122492 (2020)

    Article  CAS  Google Scholar 

  36. Abdul-Baki, A.A., Anderson, J.D.: Vigor determination in soybean seed by multiple criteria. Crop Sci. 13, 630–633 (1973)

    Article  Google Scholar 

  37. Islam, A., Teo, S.H., Chan, E.S., Taufiq-Yap, Y.H.: Enhancing the sorption performance of surfactant-assisted CaO nanoparticles. RSC Adv. 4, 65127–65136 (2014)

    Article  CAS  Google Scholar 

  38. Sivakumar, P., Anbarasu, K., Mathiarasi, R., Renganathan, S.: An eco-friendly catalyst derived from waste shell of Scylla Tranquebarica for biodiesel production. Int. J. Green Energy 11, 886–897 (2014)

    Article  CAS  Google Scholar 

  39. Suryaputra, W., Winata, I., Indraswati, N., Ismadji, S.: Shell as a new heterogeneous catalyst for biodiesel production. Renew. Energy 50, 795–799 (2013)

    Article  CAS  Google Scholar 

  40. Alavi, M.A., Morsali, A.: Ultrasonic-assisted synthesis of Ca(OH)2 and CaO nanostructures. J. Exp. Nanosci. 5, 93–105 (2010)

    Article  CAS  Google Scholar 

  41. Naemchanthara, K., Meejoo, S., Onreabroy, W.: Temperature effect on chicken egg shell investigated by XRD TGA and FTIR. Adv. Mater. Res. 55, 333–336 (2008)

    Article  Google Scholar 

  42. Jazie, A.A., Pramanik, H., Sinha, A.S.K.: Egg shell as ecofriendly catalyst for transesterification of rapeseed oil: operterization for biodiesel production. Int. J. Sustain. Dev. Green Econ. 2, 27–32 (2013)

    Google Scholar 

  43. Kamba, A.S., Ismail, M., Ibrahim, T.A.T., Zakaria, Z.A.B.: Synthesis and characterisation of calcium carbonate aragonite nanocrystals from cockle shell powder (Anadara granosa). J. Nanomater. 398357 (2013)

  44. Xia, M.S., Yao, Z.T., Ge, L.Q., Chen, T., Li, H.Y.: A potential bio-filler: the substitution effect of furfural modified clam shell for carbonate calcium in polypropylene. J. Composite Mater. 49, 807–816 (2014)

    Article  CAS  Google Scholar 

  45. Buasri, A., Chaiyut, N., Loryuenyong, V., Rodklum, C., Chaikwan, T., Kumphan, N.: Continuous process for biodiesel production in packed bed reactor from waste frying oil using potassium hydroxide supported on Jatropha curcas fruit shell as solid catalyst. Appl. Sci. 2, 641–653 (2012)

    Article  CAS  Google Scholar 

  46. Geist, J., Auerswald, K., Boom, A.: Stable carbon isotopes in freshwater mussel shells: environmental record or marker for metabolic activity. Geochim. Cosmochim. Acta 14, 3545–3554 (2005)

    Article  CAS  Google Scholar 

  47. Hu, S., Wang, Y., Han, H.: Utilization of waste freshwater mussel shell as an economic catalyst for biodiesel production. Biomass Bioener. 35, 3627–3635 (2011)

    Article  CAS  Google Scholar 

  48. White, P.J., Broadley, M.R.: Calcium in plants. Ann. Botany. 92, 487–511 (2003)

    Article  CAS  Google Scholar 

  49. Helper, P.K.: Calcium: a central regulator of plant growth and development. Plant Cell 17, 2142–2155 (2005)

    Article  Google Scholar 

  50. Yugandhar, P., Savithramma, N.: Green synthesis of calcium carbonate nanoparticles and their effects on seed germination and seedling growth of Vigna mungo (L.). Hepper. Int. J. Adv. Res. 1, 89–103 (2013)

    CAS  Google Scholar 

  51. Balaganesh, A.S., Chandar Shekar, B.: Synthesis, characterization and plant growth assessment of hybrid calcium oxide nanoparticles. Int. J. Pharm. Bio. Sci. 8, 193–198 (2017)

    Google Scholar 

  52. Naseeruddin, R., Sumathi, V., Prasad, T.N.V.K.V., Sudhakar, P., Chandrika, V., Reddy, B.R.: Unprecedented synergistic effects of nanoscale nutrients on growth, productivity of sweet sorghum [Sorghum bicolor (L.) Moench], and nutrient biofortification. J. Agric. Food Chem. 66, 1075–1084 (2018)

    Article  CAS  PubMed  Google Scholar 

  53. Mahakham, W., Sarmah, A.K., Maensiri, S., Theerakulpisut, P.: Nanopriming technology for enhancing germination and starch metabolism of aged rice seeds using phytosynthesized silver nanoparticles. Sci. Rep. 7, 8263 (2017)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Baddar, Z.E., Matocha, C.J., Unrine, J.M.: Surface coating effects on the sorption and dissolution of ZnO nanoparticles in soil. Environ. Sci. Nano 6, 2495–2507 (2019)

    Article  Google Scholar 

  55. Duran, N.M., Medina-Llamas, M., Cassanji, J.G.B., de Lima, R.G., de Almeida, E., Macedo, W.R., Mattia, D., Pereira de Carvalho, H.W.: Bean seedling growth enhancement using magnetite nanoparticles. J. Agric. Food Chem. 66, 5746–5755 (2018)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author KG thanks to Indian Council of Agricultural Research (ICAR) [F. No.NRM.11 (16) /2015-AFC (4)], Ministry of Agriculture, Government of India for their financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kasivelu Govindaraju.

Ethics declarations

Conflict of interest

All the authors have declared that there are no conflicting interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 26248 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vijai Anand, K., Reshma, M., Kannan, M. et al. Preparation and characterization of calcium oxide nanoparticles from marine molluscan shell waste as nutrient source for plant growth. J Nanostruct Chem 11, 409–422 (2021). https://doi.org/10.1007/s40097-020-00376-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40097-020-00376-4

Keywords

Navigation