Skip to main content

Advertisement

Log in

Pharmacogenetics in Cardiovascular Medicine

  • Cardiovascular Genetics (D Rader, Section Editor)
  • Published:
Current Genetic Medicine Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Pharmacogenetics is an important component of precision medicine. Even within the genomic era, several challenges lie ahead in the road towards clinical implementation of pharmacogenetics in the clinic. This review will summarize the current state of knowledge regarding pharmacogenetics of cardiovascular drugs, focusing on those with the most evidence supporting clinical implementation—clopidogrel, warfarin, and simvastatin.

Recent Findings

There is limited translation of pharmacogenetics into clinical practice primarily due to the absence of outcomes data from prospective, randomized, genotype-directed clinical trials. There are several ongoing randomized controlled trials that will provide some answers as to the clinical utility of genotype-directed strategies. Several academic medical centers have pushed towards clinical implementation, where the clinical validity data are strong. Their experiences will inform operational requirements of a clinical pharmacogenetics testing, including the timing of testing, incorporation of test results into the electronic health record, reimbursement, and ethical issues.

Summary

Pharmacogenetics of clopidogrel, warfarin, and simvastatin are three examples, where pharmacogenetics testing may provide added clinical value. Continued accumulation of evidence surrounding clinical utility of pharmacogenetics markers is imperative as this will inform reimbursement policy and drive adoption of pharamcogenetics into routine care.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlight as: • Of importance; •• Of major importance

  1. •• Precision Medicine Initiative Cohort Program. Working Group Report 2015. https://www.nih.gov/precision-medicine-initiative-cohort-program. Accessed 8 Mar 2016. The Precision Medicine Working Group Report outlines the plan for building the one million Americans cohort, enabling precision medicine discoveries at an accerlated pace.

  2. PGRN: Pharmacogenomics Research Network. http://www.nhlbi.nih.gov/research/resources/genetics-genomics/pgrn. Accessed 8 Mar 2016.

  3. CPIC: Clinical pharmacogenetics implementation consortium. https://cpicpgx.org/. Accessed 8 Mar 2016.

  4. • Scott SA, Sangkuhl K, Stein CM, et al. Clinical Pharmacogenetics Implementation Consortium Guidelines for CYP2C19 Genotype and Clopidogrel Therapy: 2013 Update. Clin Pharmacol Ther 2013;94:317–23. The CPIC guidelines for warfarin provide peer-reviewed recommendations for translating pharmacogenetic test results into actionable prescribing descisions for warfarin management.

  5. Johnson JA, Gong L, Whirl-Carrillo M, et al. Clinical pharmacogenetics implementation consortium guidelines for CYP2C9 and VKORC1 genotypes and warfarin dosing. Clin Pharmacol Ther. 2011;90:625–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. • Wilke RA, Ramsey LB, Johnson SG, et al. The clinical pharmacogenomics implementation consortium: CPIC guideline for SLCO1B1 and simvastatin-induced myopathy. Clin Pharmacol Ther 2012;92:112–7. The CPIC guidelines for statin myopathy provide peer-reviewed recommendations for translating pharmacogenetic test results into actionable prescribing descisions for statin management.

  7. Shuldiner AR, Palmer K, Pakyz RE, et al. Implementation of pharmacogenetics: the University of Maryland Personalized Anti-platelet Pharmacogenetics Program. Am J Med Genet C. 2014;166C:76–84.

    Article  Google Scholar 

  8. Kushner FG, Hand M, Smith SC Jr, et al. 2009 focused updates: ACC/AHA guidelines for the management of patients with ST-elevation myocardial infarction (updating the 2004 guideline and 2007 focused update) and ACC/AHA/SCAI guidelines on percutaneous coronary intervention (updating the 2005 guideline and 2007 focused update) a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2009;54:2205–41.

    Article  PubMed  Google Scholar 

  9. Gurbel PA, Becker RC, Mann KG, Steinhubl SR, Michelson AD. Platelet function monitoring in patients with coronary artery disease. J Am Coll Cardiol. 2007;50:1822–34.

    Article  CAS  PubMed  Google Scholar 

  10. Angiolillo DJ, Fernandez-Ortiz A, Bernardo E, et al. Variability in individual responsiveness to clopidogrel: clinical implications, management, and future perspectives. J Am Coll Cardiol. 2007;49:1505–16.

    Article  CAS  PubMed  Google Scholar 

  11. Kazui M, Nishiya Y, Ishizuka T, et al. Identification of the human cytochrome P450 enzymes involved in the two oxidative steps in the bioactivation of clopidogrel to its pharmacologically active metabolite. Drug Metab Dispos. 2010;38:92–9.

    Article  CAS  PubMed  Google Scholar 

  12. Hulot JS, Bura A, Villard E, et al. Cytochrome P450 2C19 loss-of-function polymorphism is a major determinant of clopidogrel responsiveness in healthy subjects. Blood. 2006;108:2244–7.

    Article  CAS  PubMed  Google Scholar 

  13. Gurbel PA, Bliden KP, Hiatt BL, O’Connor CM. Clopidogrel for coronary stenting: response variability, drug resistance, and the effect of pretreatment platelet reactivity. Circulation. 2003;107:2908–13.

    Article  PubMed  Google Scholar 

  14. Sibbing D, Koch W, Gebhard D, et al. Cytochrome 2C19*17 allelic variant, platelet aggregation, bleeding events, and stent thrombosis in clopidogrel-treated patients with coronary stent placement. Circulation. 2010;121:512–8.

    Article  CAS  PubMed  Google Scholar 

  15. Momary KM, Dorsch MP, Bates ER. Genetic causes of clopidogrel nonresponsiveness: which ones really count? Pharmacotherapy. 2010;30:265–74.

    Article  CAS  PubMed  Google Scholar 

  16. •• Mega JL, Simon T, Collet JP, et al. Reduced-function CYP2C19 genotype and risk of adverse clinical outcomes among patients treated with clopidogrel predominantly for PCI: a meta-analysis. JAMA 2010;304:1821–30. This was one of the largest meta-analyses providing evidence for increased risk of cardiac events in CYP2C19 loss-of-function allele carriers treated with clopidogrel.

  17. Holmes MV, Perel P, Shah T, Hingorani AD, Casas JP. CYP2C19 genotype, clopidogrel metabolism, platelet function, and cardiovascular events: a systematic review and meta-analysis. JAMA. 2011;306:2704–14.

    Article  CAS  PubMed  Google Scholar 

  18. • Holmes DR, Jr., Dehmer GJ, Kaul S, Leifer D, O’Gara PT, Stein CM. ACCF/AHA clopidogrel clinical alert: approaches to the FDA “boxed warning”: a report of the American College of Cardiology Foundation Task Force on clinical expert consensus documents and the American Heart Association endorsed by the Society for Cardiovascular Angiography and Interventions and the Society of Thoracic Surgeons. J Am Coll Cardiol 2010;56:321–41. This consensus report from the major cardiology groups provides a thorough overview of the controversy of pharmacogenetic testing to guide antiplatelet therapy prescribing following percutaneous coronary interventions.

  19. Scott SA, Sangkuhl K, Gardner EE, et al. Clinical Pharmacogenetics Implementation Consortium guidelines for cytochrome P450-2C19 (CYP2C19) genotype and clopidogrel therapy. Clin Pharmacol Ther. 2011;90:328–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wiviott SD, Braunwald E, McCabe CH, et al. Prasugrel versus clopidogrel in patients with acute coronary syndromes. N Engl J Med. 2007;357:2001–15.

    Article  CAS  PubMed  Google Scholar 

  21. Wallentin L, Becker RC, Budaj A, et al. Ticagrelor versus clopidogrel in patients with acute coronary syndromes. N Engl J Med. 2009;361:1045–57.

    Article  CAS  PubMed  Google Scholar 

  22. Manolio TA, Chisholm RL, Ozenberger B, et al. Implementing genomic medicine in the clinic: the future is here. Genet Med. 2013;15:258–67.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Levine GN, Bates ER, Blankenship JC, et al. 2011 ACCF/AHA/SCAI guideline for percutaneous coronary intervention: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines and the Society for Cardiovascular Angiography and Interventions. J Am Coll Cardiol. 2011;58:e44–122.

    Article  PubMed  Google Scholar 

  24. Pereira NL, Sargent DJ, Farkouh ME, Rihal CS. Genotype-based clinical trials in cardiovascular disease. Nat Rev Cardiol. 2015;12:475–87.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Bergmeijer TO, Janssen PW, Schipper JC, et al. CYP2C19 genotype-guided antiplatelet therapy in ST-segment elevation myocardial infarction patients-Rationale and design of the Patient Outcome after primary PCI (POPular) Genetics study. Am Heart J. 2014;168(16–22):e1.

    PubMed  Google Scholar 

  26. Kazi DS, Garber AM, Shah RU, et al. Cost-effectiveness of genotype-guided and dual antiplatelet therapies in acute coronary syndrome. Ann Intern Med. 2014;160:221–32.

    Article  PubMed  Google Scholar 

  27. Lala A, Berger JS, Sharma G, Hochman JS, Scott Braithwaite R, Ladapo JA. Genetic testing in patients with acute coronary syndrome undergoing percutaneous coronary intervention: a cost-effectiveness analysis. J Thromb Haemost JTH. 2013;11:81–91.

    Article  CAS  PubMed  Google Scholar 

  28. •• Cresci S, Depta JP, Lenzini PA, et al. Cytochrome p450 gene variants, race, and mortality among clopidogrel-treated patients after acute myocardial infarction. Circ Cardiovasc Genet 2014;7:277–86. This study highlights the importance of investigating pharmacogenetic effects in several racial groups as they may differ by race.

  29. Nelson A. Unequal treatment: confronting racial and ethnic disparities in health care. J Natl Med Assoc. 2002;94:666–8.

    PubMed  PubMed Central  Google Scholar 

  30. Wittkowsky AK, Devine EB. Frequency and causes of overanticoagulation and underanticoagulation in patients treated with warfarin. Pharmacotherapy. 2004;24:1311–6.

    Article  CAS  PubMed  Google Scholar 

  31. Budnitz DS, Lovegrove MC, Shehab N, Richards CL. Emergency hospitalizations for adverse drug events in older Americans. N Engl J Med. 2011;365:2002–12.

    Article  CAS  PubMed  Google Scholar 

  32. Daly AK, King BP. Pharmacogenetics of oral anticoagulants. Pharmacogenetics. 2003;13:247–52.

    Article  CAS  PubMed  Google Scholar 

  33. Li T, Chang CY, Jin DY, Lin PJ, Khvorova A, Stafford DW. Identification of the gene for vitamin K epoxide reductase. Nature. 2004;427:541–4.

    Article  CAS  PubMed  Google Scholar 

  34. Rieder MJ, Reiner AP, Gage BF, et al. Effect of VKORC1 haplotypes on transcriptional regulation and warfarin dose. N Engl J Med. 2005;352:2285–93.

    Article  CAS  PubMed  Google Scholar 

  35. • Cooper GM, Johnson JA, Langaee TY, et al. A genome-wide scan for common genetic variants with a large influence on warfarin maintenance dose. Blood 2008;112:1022–7. This is the first genomewide association study in European subjects which confirmed that VKORC1 and CYP2C9 are the major genetic contributors to warfarin dose requirements.

  36. • Takeuchi F, McGinnis R, Bourgeois S, et al. A genome-wide association study confirms VKORC1, CYP2C9, and CYP4F2 as principal genetic determinants of warfarin dose. PLoS Genet 2009;5:e1000433. This genome-wide assocation study in European individuals identified CYP4F2 as a third gene that contributes to warfarin dose requirements.

  37. Manolopoulos VG, Ragia G, Tavridou A. Pharmacogenetics of coumarinic oral anticoagulants. Pharmacogenomics. 2010;11:493–6.

    Article  CAS  PubMed  Google Scholar 

  38. Cavallari LH, Langaee TY, Momary KM, et al. Genetic and clinical predictors of warfarin dose requirements in African Americans. Clin Pharmacol Ther. 2010;87:459–64.

    Article  CAS  PubMed  Google Scholar 

  39. Warfarin (Coumadin) [package insert]. Princeton, NJ, USA: Bristol-Myers Squibb; 2010.

  40. •• Pirmohamed M, Burnside G, Eriksson N, et al. A Randomized Trial of Genotype-Guided Dosing of Warfarin. New England Journal of Medicine 2013;369:2294–303. This was a European prospective genotype directed trial aimed at maintaining patients within a target INR range.

  41. •• Kimmel SE, French B, Kasner SE, et al. A Pharmacogenetic versus a Clinical Algorithm for Warfarin Dosing. New England Journal of Medicine 2013;369:2283–93. This was a prospective genotype directed trial aimed at maintaining patients within a target INR range performed in the United States and included an ethnically diverse population.

  42. • Perera MA, Cavallari LH, Limdi NA, et al. Genetic variants associated with warfarin dose in African-American individuals: a genome-wide association study. Lancet 2013;382:790–6. This is the first genome-wide assocation study performed in African ancestry individuals which discovered a novel CYP2C variant that predicted warfarin dose requirments in this ethnic group.

  43. Limdi NA, Brown TM, Yan Q, et al. Race influences warfarin dose changes associated with genetic factors. Blood. 2015;126:539–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ramirez AH, Shi Y, Schildcrout JS, et al. Predicting warfarin dosage in European-Americans and African-Americans using DNA samples linked to an electronic health record. Pharmacogenomics. 2012;13:407–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Alfirevic A, Neely D, Armitage J, et al. Phenotype standardization for statin-induced myotoxicity. Clin Pharmacol Ther. 2014;96:470–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Third Report of the National Cholesterol Education Program (NCEP). Expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (adult treatment panel III) final report. Circulation. 2002;106:3143–421.

    Google Scholar 

  47. Stone NJ, Robinson JG, Lichtenstein AH, et al. 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2014;63:2889–934.

    Article  PubMed  Google Scholar 

  48. Ridker PM, Cook NR. Statins: new American guidelines for prevention of cardiovascular disease. Lancet. 2014;382:1762–5.

    Article  Google Scholar 

  49. Ramsey LB, Johnson SG, Caudle KE, et al. The clinical pharmacogenetics implementation consortium guideline for SLCO1B1 and simvastatin-induced myopathy: 2014 update. Clin Pharmacol Ther. 2014;96:423–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Thompson PD, Clarkson P, Karas RH. Statin-associated myopathy. JAMA. 2003;289:1681–90.

    Article  CAS  PubMed  Google Scholar 

  51. SLCO1B1 Variants and Statin-Induced Myopathy—A Genomewide Study. New England Journal of Medicine 2008;359:789–99.

  52. Kameyama Y, Yamashita K, Kobayashi K, Hosokawa M, Chiba K. Functional characterization of SLCO1B1 (OATP-C) variants, SLCO1B1*5, SLCO1B1*15 and SLCO1B1*15 + C1007G, by using transient expression systems of HeLa and HEK293 cells. Pharmacogenet Genom. 2005;15:513–22.

    Article  CAS  Google Scholar 

  53. Pasanen MK, Neuvonen M, Neuvonen PJ, Niemi M. SLCO1B1 polymorphism markedly affects the pharmacokinetics of simvastatin acid. Pharmacogenet Genom. 2006;16:873–9.

    Article  CAS  Google Scholar 

  54. Voora D, Shah SH, Spasojevic I, et al. The SLCO1B1*5 genetic variant is associated with statin-induced side effects. J Am Coll Cardiol. 2009;54:1609–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Donnelly LA, Doney AS, Tavendale R, et al. Common nonsynonymous substitutions in SLCO1B1 predispose to statin intolerance in routinely treated individuals with type 2 diabetes: a go-DARTS study. Clin Pharmacol Ther. 2011;89:210–6.

    Article  CAS  PubMed  Google Scholar 

  56. Danik JS, Chasman DI, MacFadyen JG, Nyberg F, Barratt BJ, Ridker PM. Lack of association between SLCO1B1 polymorphisms and clinical myalgia following rosuvastatin therapy. Am Heart J. 2013;165:1008–14.

    Article  CAS  PubMed  Google Scholar 

  57. Pasanen MK, Fredrikson H, Neuvonen PJ, Niemi M. Different effects of SLCO1B1 polymorphism on the pharmacokinetics of atorvastatin and rosuvastatin. Clin Pharmacol Ther. 2007;82:726–33.

    Article  CAS  PubMed  Google Scholar 

  58. Jung K, McBean AM, Kim JA. Comparison of statin adherence among beneficiaries in MA-PD plans versus PDPs. J Manag Care Pharm JMCP. 2012;18:106–15.

    PubMed  Google Scholar 

  59. Li JH, Suchindran S, Shah SH, Kraus WE, Ginsburg GS, Voora D. SLCO1B1 genetic variants, long-term low-density lipoprotein cholesterol levels and clinical events in patients following cardiac catheterization. Pharmacogenomics. 2015;16:449–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Aslibekyan S, Claas SA, Arnett DK. To replicate or not to replicate: the case of pharmacogenetic studies: Establishing validity of pharmacogenomic findings: from replication to triangulation. Circ Cardiovasc Genet. 2013;6:409–12.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Ioannidis JP. To replicate or not to replicate: the case of pharmacogenetic studies: Have pharmacogenomics failed, or do they just need larger-scale evidence and more replication? Circ Cardiovasc Genet. 2013;6:413–8.

    Article  PubMed  Google Scholar 

  62. Relling MV, Altman RB, Goetz MP, Evans WE. Clinical implementation of pharmacogenomics: overcoming genetic exceptionalism. Lancet Oncol. 2010;11:507–9.

    Article  PubMed  PubMed Central  Google Scholar 

  63. US Food and Drug Administration Drug Guidance. Pharmacokinetics in patients with impaired renal function- study design, data analysis, and impact on dosing and labeling. http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM204959.pdf. Accessed 9 Mar 2016

  64. Teutsch SM, Bradley LA, Palomaki GE, et al. The evaluation of genomic applications in practice and prevention (EGAPP) initiative: methods of the EGAPP Working Group. Genet Med. 2009;11:3–14.

    Article  PubMed  PubMed Central  Google Scholar 

  65. United States Food and Drug Administration. Table of pharmacogenomics biomarkers in drug lavels. http://www.fda.gov/drugs/scienceresearch/researchareas/pharmacogenetics/ucm083378.htm. Accessed 9 Mar 2016.

  66. Wang B, Canestaro WJ, Choudhry NK. Clinical evidence supporting pharmacogenomic biomarker testing provided in US Food and Drug Administration drug labels. JAMA internal medicine. 2014;174:1938–44.

    Article  PubMed  Google Scholar 

  67. Dunnenberger HM, Crews KR, Hoffman JM, et al. Preemptive clinical pharmacogenetics implementation: current programs in five US medical centers. Annu Rev Pharmacol Toxicol. 2015;55:89–106.

    Article  CAS  PubMed  Google Scholar 

  68. • Shuldiner AR, Relling MV, Peterson JF, et al. The Pharmacogenomics Research Network Translational Pharmacogenetics Program: overcoming challenges of real-world implementation. Clin Pharmacol Ther 2013;94:207–10. This paper discusses logistical barriers to implementation of pharmacogenomics in clinical practice.

  69. Hoffman JM, Haidar CE, Wilkinson MR, et al. PG4KDS: a model for the clinical implementation of pre-emptive pharmacogenetics. Am J Med Genet C. 2014;166C:45–55.

    Article  Google Scholar 

  70. Johnson JA, Elsey AR, Clare-Salzler MJ, Nessl D, Conlon M, Nelson DR. Institutional profile: University of Florida and Shands Hospital Personalized Medicine Program: clinical implementation of pharmacogenetics. Pharmacogenomics. 2013;14:723–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. • Van Driest SL, Shi Y, Bowton EA, et al. Clinically actionable genotypes among 10,000 patients with preemptive pharmacogenomic testing. Clin Pharmacol Ther 2014;95:423–31. This study shows that preemptive genotyping would yield a high number of pharmacogenetic variants that would be clinically actionable.

  72. Levy KD, Decker BS, Carpenter JS, et al. Prerequisites to implementing a pharmacogenomics program in a large health-care system. Clin Pharmacol Ther. 2014;96:307–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Johnson JA, Burkley BM, Langaee TY, Clare-Salzler MJ, Klein TE, Altman RB. Implementing personalized medicine: development of a cost-effective customized pharmacogenetics genotyping array. Clin Pharmacol Ther. 2012;92:437–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Gurwitz D, Lunshof JE, Dedoussis G, et al. Pharmacogenomics education: International Society of Pharmacogenomics recommendations for medical, pharmaceutical, and health schools deans of education. Pharmacogenom J. 2005;5:221–5.

    Article  CAS  Google Scholar 

  75. Stanek EJ, Sanders CL, Taber KA, et al. Adoption of pharmacogenomic testing by US physicians: results of a nationwide survey. Clin Pharmacol Ther. 2012;91:450–8.

    Article  CAS  PubMed  Google Scholar 

  76. Haga SB, Burke W, Ginsburg GS, Mills R, Agans R. Primary care physicians’ knowledge of and experience with pharmacogenetic testing. Clin Genet. 2012;82:388–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Tuteja S, Haynes K, Zayac C, Sprague JE, Bernhardt B, Pyeritz R. Community pharmacists’ attitudes towards clinical utility and ethical implications of pharmacogenetic testing. Personal Med 2013;10

  78. Kullo IJ, Haddad R, Prows CA, et al. Return of results in the genomic medicine projects of the eMERGE network. Front Genet. 2014;5:50.

    PubMed  PubMed Central  Google Scholar 

  79. Fullerton SM, Wolf WA, Brothers KB, et al. Return of individual research results from genome-wide association studies: experience of the Electronic Medical Records and Genomics (eMERGE) Network. Genet Med. 2012;14:424–31.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Peterson JF, Field JR, Shi Y, et al. Attitudes of clinicians following large-scale pharmacogenomics implementation. Pharmacogenomics J 2015.

  81. Pacanowski M, Huang SM. Precision Medicine. Clin Pharmacol Ther. 2016;99:124–9.

    Article  CAS  PubMed  Google Scholar 

  82. Bredenoord AL, Kroes HY, Cuppen E, Parker M, van Delden JJ. Disclosure of individual genetic data to research participants: the debate reconsidered. Trends Genet. 2011;27:41–7.

    Article  CAS  PubMed  Google Scholar 

  83. Green RC, Berg JS, Grody WW, et al. ACMG recommendations for reporting of incidental findings in clinical exome and genome sequencing. Genet Med. 2013;15:565–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Rothstein MA. Currents in contemporary ethics. GINA, the ADA, and genetic discrimination in employment. J Law Med Ethics. 2008;36:841–840.

    Article  Google Scholar 

  85. Patel HN, Ursan ID, Zueger PM, Cavallari LH, Pickard AS. Stakeholder views on pharmacogenomic testing. Pharmacotherapy. 2014;34:151–65.

    Article  PubMed  Google Scholar 

  86. Laedtke AL, O’Neill SM, Rubinstein WS, Vogel KJ. Family physicians’ awareness and knowledge of the Genetic Information Non-Discrimination Act (GINA). J Genet Couns. 2012;21:345–52.

    Article  PubMed  Google Scholar 

  87. Roden DM, Johnson JA, Kimmel SE, et al. Cardiovascular Pharmacogenomics. Circ Res. 2011;109:807–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Shuldiner AR, O’Connell JR, Bliden KP, et al. Association of cytochrome P450 2C19 genotype with the antiplatelet effect and clinical efficacy of clopidogrel therapy. JAMA. 2009;302:849–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Daly AK. Genome-wide association studies in pharmacogenomics. Nat Rev Genet. 2010;11:241–6.

    Article  CAS  PubMed  Google Scholar 

  90. Global Lipids Genetics C, Willer CJ, Schmidt EM, et al. Discovery and refinement of loci associated with lipid levels. Nat Genet. 2013;45:1274–83.

    Article  Google Scholar 

  91. Arwood MJ, Cavallari LH, Duarte JD. Pharmacogenomics of hypertension and heart disease. Curr Hypertens Rep. 2015;17:586.

    Article  PubMed  Google Scholar 

  92. Oni-Orisan A, Lanfear DE. Pharmacogenomics in heart failure: where are we now and how can we reach clinical application? Cardiol Rev. 2014;22:193–8.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Cooper-DeHoff RM, Johnson JA. Hypertension pharmacogenomics: in search of personalized treatment approaches. Nat Rev Nephrol. 2016;12:110–22.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Supported in part by grants from the National Heart, Lung, and Blood Institute (RO1HL092173; 1K24HL133373).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sony Tuteja.

Ethics declarations

Disclosure

Sony Tuteja reports grants from the University of Pennsylvania Health System for the study of the pharmacogenomics of antiplatelet drugs, during the conduct of study. Nita Limdi reports grants from NIH (NHLBI).

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical collection on Cardiovascular Genetics.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tuteja, S., Limdi, N. Pharmacogenetics in Cardiovascular Medicine. Curr Genet Med Rep 4, 119–129 (2016). https://doi.org/10.1007/s40142-016-0096-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40142-016-0096-z

Keywords

Navigation