Skip to main content
Log in

Biological treatment of slaughterhouse wastewater: kinetic modeling and prediction of effluent

  • Research article
  • Published:
Journal of Environmental Health Science and Engineering Aims and scope Submit manuscript

Abstract

In this study three modeling approaches consisting Modified Stover-Kincannon, multilayer perceptron neural network (MLPANN) and B-Spline quasi interpolation were applied in order to predict effluent of up-flow anaerobic sludge blanket (UASB) reactor and also to find the reaction kinetics. At first run, the average total chemical oxygen demand (TCOD) removal efficiency was 48.3% with hydraulic retention time (HRT) of 26 h and 63.8% with HRT of 37 h, at OLR of 0.77–1.66 kg TCOD/m3 d. At the second run, UASB reactor operated with OLR of 1.94–3.1 kg TCOD/m3 d and achieved the average TCOD removal efficiency of 64.74 and 72.48% with HRT of 26 and 37 h, respectively. The Modified Stover-Kincannon performed well in terms of kinetic determination with a high value of regression coefficient over 0.98. The B-Spline quasi interpolation and MLPANN indicated a great fit for effluent prediction with average R of 0.9984 and 0.9986, and MSE of 157.6050 and 129.7796, respectively; however, they gave no information about reactions occurred in the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Bustillo-Lecompte CF, MJJoem M. Slaughterhouse wastewater characteristics, treatment, and management in the meat processing industry: a review on trends and advances. J Environ Manag. 2015;161:287–302.

    Article  CAS  Google Scholar 

  2. Palatsi J, Viñas M, Guivernau M, Fernandez B, Flotats XJBT. Anaerobic digestion of slaughterhouse waste: main process limitations and microbial community interactions. Bioresour Technol. 2011;102(3):2219–27.

    Article  CAS  Google Scholar 

  3. Cao W, Mehrvar M, JCER Design. Slaughterhouse wastewater treatment by combined anaerobic baffled reactor and UV/H2O2 processes. Chem Eng Res Des. 2011;89(7):1136–43.

    Article  CAS  Google Scholar 

  4. Chernicharo CAL, CdJRiES, Bio/Technology. Post-treatment options for the anaerobic treatment of domestic wastewater. Rev Environ Sci Biotechnol. 2006;5(1):73–92.

    Article  CAS  Google Scholar 

  5. Lettinga G, Van Velsen A, Hobma SD, De Zeeuw W, Klapwijk AJB. Use of the upflow sludge blanket (USB) reactor concept for biological wastewater treatment, especially for anaerobic treatment. Biotechnol Bioeng. 1980;22(4):699–734.

    Article  CAS  Google Scholar 

  6. Khan AA, Gaur RZ, Tyagi V, Khursheed A, Lew B, Mehrotra I, et al. Sustainable options of post treatment of UASB effluent treating sewage: a review. Resour Conserv Recycl. 2011;55(12):1232–51.

    Article  Google Scholar 

  7. Gholami M, Nasseri S, Alizadehfard M-R, Mesdaghinia AJWQRJ. Textile dye removal by membrane technology and biological oxidation. Water Qual Res J. 2003;38(2):379–91.

    Article  CAS  Google Scholar 

  8. Salimi M, Esrafili A, Gholami M, Jafari AJ, Kalantary RR, Farzadkia M, et al. Contaminants of emerging concern: a review of new approach in AOP technologies. Environ Monit Assess. 2017;189(8):414.

    Article  Google Scholar 

  9. Jin R-C, Zheng PJJ. Kinetics of nitrogen removal in high rate anammox upflow filter. J Hazard Mater. 2009;170(2–3):652–6.

    Article  CAS  Google Scholar 

  10. Debik E, Coskun TJBT. Use of the static granular bed reactor (SGBR) with anaerobic sludge to treat poultry slaughterhouse wastewater and kinetic modeling. Bioresour Technol. 2009;100(11):2777–82.

    Article  CAS  Google Scholar 

  11. Yetilmezsoy K, Sapci-Zengin ZJSer, assessment r. Stochastic modeling applications for the prediction of COD removal efficiency of UASB reactors treating diluted real cotton textile wastewater. Stoch Environ Res Risk Assess. 2009;23(1):13–26.

    Article  Google Scholar 

  12. Yetilmezsoy K. Treatability of poultry manure wastewater using anaerobic sludge bed reactor. Istanbul: Diss. PhD Thesis, Institute of Science, Department of Environmental Engineering, Yildiz Technical University; 2008.

  13. Turkdogan-Aydinol FI, Yetilmezsoy K, Comez S, Bayhan HJB, engineering b. Performance evaluation and kinetic modeling of the start-up of a UASB reactor treating municipal wastewater at low temperature. Bioprocess Biosyst Eng. 2011;34(2):153–62.

  14. Chan YJ, Chong MF, Law CLJEt. Performance and kinetic evaluation of an integrated anaerobic–aerobic bioreactor in the treatment of palm oil mill effluent. Environ Technol. 2017;38(8):1005–21.

    Article  CAS  Google Scholar 

  15. Wang J, Yan J, Xu WJBej. Treatment of dyeing wastewater by MIC anaerobic reactor. Biochem Eng J. 2015;101:179–84.

    Article  CAS  Google Scholar 

  16. Mostafa A, Elsamadony M, El-Dissouky A, Elhusseiny A, Tawfik AJBt. Biological H2 potential harvested from complex gelatinaceous wastewater via attached versus suspended growth culture anaerobes. Bioresour Technol. 2017;231:9–18.

    Article  CAS  Google Scholar 

  17. Khataee A, Mirzajani OJD. UV/peroxydisulfate oxidation of CI Basic Blue 3: modeling of key factors by artificial neural network. Desalination. 2010;251(1–3):64–9.

    Article  CAS  Google Scholar 

  18. Moral H, Aksoy A, Gokcay CFJC, Engineering C. Modeling of the activated sludge process by using artificial neural networks with automated architecture screening. Comput Chem Eng. 2008;32(10):2471–8.

    Article  CAS  Google Scholar 

  19. Raduly B, Gernaey KV, Capodaglio AG, Mikkelsen PS, Henze MJEM, Software. Artificial neural networks for rapid WWTP performance evaluation: methodology and case study. Environ Model Softw. 2007;22(8):1208–16.

    Article  Google Scholar 

  20. Güçlü D, Dursun ŞJB, engineering b. Artificial neural network modelling of a large-scale wastewater treatment plant operation. Bioprocess Biosyst Eng. 2010;33(9):1051–8.

  21. Kordkandi SA, Berardi LJBej. Comparing new perspective of hybrid approach and conventional kinetic modelling techniques of a submerged biofilm reactor performance. Biochem Eng J. 2015;103:170–6.

  22. Vafaei F, Movafeghi A, Khataee A, Zarei M, Lisar SSJE, safety e. Potential of Hydrocotyle vulgaris for phytoremediation of a textile dye: inducing antioxidant response in roots and leaves. Ecotox Environ Safe. 2013;93:128–34.

  23. Aminikhah H, Alavi JJICM. Applying cubic B-Spline quasi-interpolation to solve 1D wave equations in polar coordinates. Computational Mathematics. 2013;2013:1–8.

    Google Scholar 

  24. American Public Health Association & Eaton, Andrew D & Water Environment Federation & American Water Works Association. Standard methods for the examination of water and wastewater. 21st ed. Washington, D.C.: APHA-AWWA-WEF; 2005.

  25. Jelali M, Kroll A. Hydraulic servo-systems. In: Modelling, identification and control. https://www.springer.com/gp/book/9781852336929.

  26. Ahn J-H, Forster CJPB. A comparison of mesophilic and thermophilic anaerobic upflow filters treating paper–pulp–liquors. Process Biochem. 2002;38(2):256–61.

    Article  CAS  Google Scholar 

  27. Kuşçu ÖS, Sponza DTJJohm. Kinetics of para-nitrophenol and chemical oxygen demand removal from synthetic wastewater in an anaerobic migrating blanket reactor. J Hazard Mater. 2009;161(2–3):787–99.

  28. Yu H, Wilson F, Tay J-HJWr. Kinetic analysis of an anaerobic filter treating soybean wastewater. WaterRes. 1998;32(11):3341–52.

    CAS  Google Scholar 

  29. Zhu C-G, Kang W-SJAM, Computation. Numerical solution of Burgers–Fisher equation by cubic B-spline quasi-interpolation. Appl Math Comput. 2010;216(9):2679–86.

    Google Scholar 

  30. Aminikhah H, Alavi JJSJ. An efficient B-spline difference method for solving system of nonlinear parabolic PDEs. SeMA Journal. 2018;75(2):335–48.

    Article  Google Scholar 

  31. Calabrò F, Falini A, Sampoli ML, Sestini AJJoC, Mathematics A. Efficient quadrature rules based on spline quasi-interpolation for application to IGA-BEMs. J Comput Appl Math. 2018;338:153–67.

  32. Aminikhah H, Alavi JJC. B-spline collocation and quasi-interpolation methods for boundary layer flow and convection heat transfer over a flat plate. Calcolo. 2017;54(1):299–317.

    Article  Google Scholar 

  33. Zhang J, Zheng J, Gao QJAM, Computation. Numerical solution of the Degasperis–Procesi equation by the cubic B-spline quasi-interpolation method. Appl Math Comput. 2018;324:218–27.

  34. Zhu C-G, Wang R-HJAM, Computation. Numerical solution of Burgers’ equation by cubic B-spline quasi-interpolation. Appl Math Comput. 2009;208(1):260–72.

  35. Del Nery V, De Nardi I, Damianovic MHRZ, Pozzi E, Amorim A, Zaiat MJR, conservation et al. Long-term operating performance of a poultry slaughterhouse wastewater treatment plant. Resour Conserv Recy. 2007;50(1):102–14.

  36. Martínez J, Borzacconi L, Mallo M, Galisteo M, Vinas MJWs, Technology. Treatment of slaughterhouse wastewater. Water Sci Technol. 1995;32(12):99–104.

  37. Borja R, Banks CJ, Wang Z, Mancha AJBt. Anaerobic digestion of slaughterhouse wastewater using a combination sludge blanket and filter arrangement in a single reactor. Bioresour Technol. 1998;65(1–2):125–33.

    Article  CAS  Google Scholar 

  38. Caixeta CE, Cammarota MC, Xavier AMJBT. Slaughterhouse wastewater treatment: evaluation of a new three-phase separation system in a UASB reactor. Bioresour Technol. 2002;81(1):61–9.

    Article  CAS  Google Scholar 

  39. Borja R, Banks CJ, Wang ZJBt. Effect of organic loading rate on anaerobic treatment of slaughterhouse wastewater in a fluidised-bed reactor. Bioresour Technol. 1995;52(2):157–62.

    Article  CAS  Google Scholar 

  40. Tritt WJBt. The anaerobic treatment of slaughterhouse wastewater in fixed-bed reactors. Bioresour Technol. 1992;41(3):201–7.

    Article  CAS  Google Scholar 

  41. Ruiz I, Veiga MC, De Santiago P, Blazquez RJBT. Treatment of slaughterhouse wastewater in a UASB reactor and an anaerobic filter. Bioresour Technol. 1997;60(3):251–8.

    Article  CAS  Google Scholar 

  42. KJBt Y. Integration of kinetic modeling and desirability function approach for multi-objective optimization of UASB reactor treating poultry manure wastewater. Bioresour Technol. 2012;118:89–101.

    Article  Google Scholar 

  43. Işik M, Sponza DTJPB. Substrate removal kinetics in an upflow anaerobic sludge blanket reactor decolorising simulated textile wastewater. Process Biochem. 2005;40(3–4):1189–98.

    Article  Google Scholar 

  44. Sponza DT, AJJoem U. Kinetic of carbonaceous substrate in an upflow anaerobic sludge sludge blanket (UASB) reactor treating 2, 4 dichlorophenol (2, 4 DCP). J Environ Manag. 2008;86(1):121–31.

    Article  CAS  Google Scholar 

  45. Büyükkamaci N, Filibeli AJPB. Determination of kinetic constants of an anaerobic hybrid reactor. Process Biochem. 2002;38(1):73–9.

    Article  Google Scholar 

  46. Sandhya S, Sarayu K, KJBt S. Determination of kinetic constants of hybrid textile wastewater treatment system. Bioresour Technol. 2008;99(13):5793–7.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge Sepidroud slaughterhouse factory for its cooperation in providing slaughterhouse wastewater sample.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Moein Besharati Fard or Seyed Ahmad Mirbagheri.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Performance of up-flow anaerobic sludge blanket reactor.

• Effect of HRT on removal efficiency.

• Multi-layer perceptron and B-Spline quasi interpolation were used in order to predict the effluent of UASB reactor.

• Kinetic modeling of UASB reactor by modified Stover-Kincannon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Besharati Fard, M., Mirbagheri, S.A., Pendashteh, A. et al. Biological treatment of slaughterhouse wastewater: kinetic modeling and prediction of effluent. J Environ Health Sci Engineer 17, 731–741 (2019). https://doi.org/10.1007/s40201-019-00389-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40201-019-00389-4

Keywords

Navigation