Skip to main content
Log in

Novel Targets of Drug Treatment for Pulmonary Hypertension

  • Leading Article
  • Published:
American Journal of Cardiovascular Drugs Aims and scope Submit manuscript

Abstract

Biomedical advances over the last decade have identified the central role of proliferative pulmonary arterial smooth muscle cells (PASMCs) in the development of pulmonary hypertension (PH). Furthermore, promoters of proliferation and apoptosis resistance in PASMCs and endothelial cells, such as aberrant signal pathways involving growth factors, G protein-coupled receptors, kinases, and microRNAs, have also been described. As a result of these discoveries, PH is currently divided into subgroups based on the underlying pathology, which allows focused and targeted treatment of the condition. The defining features of PH, which subsequently lead to vascular wall remodeling, are dysregulated proliferation of PASMCs, local inflammation, and apoptosis-resistant endothelial cells. Efforts to assess the relative contributions of these factors have generated several promising targets. This review discusses recent novel targets of therapies for PH that have been developed as a result of these advances, which are now in pre-clinical and clinical trials (e.g., imatinib [phase III]; nilotinib, AT-877ER, rituximab, tacrolimus, paroxetine, sertraline, fluoxetine, bardoxolone methyl [phase II]; and sorafenib, FK506, aviptadil, endothelial progenitor cells (EPCs) [phase I]). While substantial progress has been made in recent years in targeting key molecular pathways, PH still remains without a cure, and these novel therapies provide an important conceptual framework of categorizing patients on the basis of molecular phenotype(s) for effective treatment of the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Galiè N, Hoeper MM, Humbert M, et al. Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur Respir J. 2009;34(6):1219–63.

    Article  PubMed  Google Scholar 

  2. Pullamsetti SS, Schermuly R, Ghofrani A, et al. Novel and emerging therapies for pulmonary hypertension. Am J Respir Crit Care Med. 2014;189(4):394–400.

    Article  CAS  PubMed  Google Scholar 

  3. George MG, Schieb LJ, Ayala C, et al. Pulmonary hypertension surveillance. Chest. 2014;146(2):476–95.

    Article  PubMed Central  PubMed  Google Scholar 

  4. D’Alonzo GE, Barst RJ, Ayres SM, et al. Survival in patients with primary pulmonary hypertension. Results from a national prospective registry. Ann Intern Med. 1991;115(5):343–9.

    Article  PubMed  Google Scholar 

  5. Schermuly RT, Dony E, Ghofrani HA, et al. Reversal of experimental pulmonary hypertension by PDGF inhibition. J Clin Invest. 2005;115:2811–21.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Perros F, Montani D, Dorfmu¨ller P, et al. Platelet-derived growth factor expression and function in idiopathic pulmonary arterial hypertension. Am J Respir Crit Care Med. 2008;178:81–8.

    Article  CAS  PubMed  Google Scholar 

  7. Nakamura K, Akagi S, Ogawa A, et al. Pro-apoptotic effects of imatinib on PDGF stimulated pulmonary artery smooth muscle cells from patients with idiopathic pulmonary arterial hypertension. Int J Cardiol. 2011;159(2):100–6.

    Article  PubMed  Google Scholar 

  8. Vantler M, Karikkineth BC, Naito H, et al. PDGF-BB protects cardiomyocytes from apoptosis and improves contractile function of engineered heart tissue. J Mol Cell Cardiol. 2010;48:1316–23.

    Article  CAS  PubMed  Google Scholar 

  9. Panky EA, Thammasiboon S, Lasker GF, et al. Imatinib attenuates monocrotaline pulmonary hypertension and has potent vasodilator activity in pulmonary and systemic vascular beds in the rat. Am J Physiol Heart Circ Physiol. 2013;305:H1288–96.

    Article  Google Scholar 

  10. Ghofrani HA, Seeger W, Grimminger F. Imatinib for the treatment of pulmonary arterial hypertension. N Engl J Med. 2005;353:1412–3.

    Article  CAS  PubMed  Google Scholar 

  11. Patterson KC, Weissmann A, Ahmadi T, et al. Imatinib mesylate in the treatment of refractory idiopathic pulmonary arterial hypertension. Ann Intern Med. 2006;145:152–3.

    Article  PubMed  Google Scholar 

  12. Souza R, Sitbon O, Parent G, et al. Long term imatinib treatment in pulmonary arterial hypertension. Thorax. 2006;61:736.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Ten Freyhaus H, Dumitrescu D, Bovenschulte H, et al. Significant improvement of right ventricular function by imatinib mesylate in scleroderma-associated pulmonary arterial hypertension. Clin Res Cardiol. 2009;98:265–7.

    Article  PubMed  Google Scholar 

  14. Tapper EB, Knowles D, Heffron T, et al. Portopulmonary hypertension: imatinib is a novel treatment and the Emory experience with this condition. Transplant Proc. 2009;41:1969–71.

    Article  CAS  PubMed  Google Scholar 

  15. Ghofrani HA, Morrell NW, Hoeper MM, et al. Imatinib in pulmonary arterial hypertension patients with inadequate response to established therapy. Am J Respir Crit Care Med. 2010;182:1171–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Hoeper MM, Barst RJ, Bourge RC, et al. Imatinib mesylate as add-on therapy for pulmonary arterial hypertension: results of the randomized IMPRES study. Circulation. 2013;127(10):1128–38.

    Article  CAS  PubMed  Google Scholar 

  17. Maurer B, Reich N, Juengel A, et al. Fra-2 transgenic mice as a novel model of pulmonary hypertension associated with systemic sclerosis. Ann Rheum Dis. 2012;71(8):1382–7.

    Article  CAS  PubMed  Google Scholar 

  18. Efficacy, safety, tolerability and pharmocokinetics (PK) of nilotinib (AMN107) in pulmonary arterial hypertension (PAH). Novartis Pharmaceuticals. https://clinicaltrials.gov/show/NCT01179737. Accessed April 2014.

  19. Moreno-Vinasco L, Gomberg-Maitland M, Maitland ML, et al. Genomic assessment of a multikinase inhibitor, sorafenib, in a rodent model of pulmonary hypertension. Physiol Genomics. 2008;33(2):278–91.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Gomberg-Maitland M, Maitland ML, Barst RJ, et al. A dosing/cross-development study of the multikinase inhibitor sorafenib in patients with pulmonary arterial hypertension. Clin Pharmacol Ther. 2010;87(3):303–10.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Taçoy G, Çengel A, Özkurt ZN, et al. Dasatinib-induced pulmonary hypertension in acute lymphoblastic leukemia: case report. Turk Kardiyol Dern Ars. 2015;43(1):78–81.

    Article  PubMed  Google Scholar 

  22. Hong JH, Lee SE, Choi SY, et al. Reversible pulmonary arterial hypertension associated with dasatinib for chronic myeloid leukemia. Cancer Res Treat. 2014;17:1–6.

    Google Scholar 

  23. Buchelli Ramirez HL, Álvarez Álvarez CM, Rodríguez Reguero JJ, et al. Reversible pre-capillary pulmonary hypertension due to dasatinib. Respir Care. 2014;59:e77–80.

    Article  PubMed  Google Scholar 

  24. Ciuclan L, Bonneau O, Hussey M, et al. A novel murine model of severe pulmonary arterial hypertension. Am J Respir Crit Care Med. 2011;184(10):1171–82.

    Article  CAS  PubMed  Google Scholar 

  25. Robertson TP, Dipp M, Ward JP, et al. Inhibition of sustained hypoxic vasoconstriction by Y-27632 in isolated intrapulmonary arteries and perfused lung of the rat. Br J Pharmacol. 2000;131(1):5–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Hu J, Tarantelli R, Simon M, et al. Simian immunodeficiency virus induces pulmonary arterial hypertension in rhesus macaques: a hemodynamic study. Circulation. 2013;128(22):A18705.

    Google Scholar 

  27. Robertson TP, Aaronson PI, Ward JP. Ca2+ sensitization during sustained hypoxic pulmonary vasoconstriction is endothelium dependent. Am J Physiol Lung Cell Mol Physiol. 2003;284(6):L1121–6.

    Article  CAS  PubMed  Google Scholar 

  28. Wang Z, Lanner MC, Jin N, et al. Hypoxia inhibits myosin phosphatase in pulmonary arterial smooth muscle cells: role of Rho-kinase. Am J Respir Cell Mol Biol. 2003;29(4):465–71.

    Article  CAS  PubMed  Google Scholar 

  29. Abe K, Shimokawa H, Morikawa K, et al. Long-term treatment with a Rho-kinase inhibitor improves monocrotaline-induced fatal pulmonary hypertension in rats. Circ Res. 2004;94(3):385–93.

    Article  CAS  PubMed  Google Scholar 

  30. Abe K, Tawara S, Oi K, et al. Long-term inhibition of Rho-kinase ameliorates hypoxia-induced pulmonary hypertension in mice. J Cardiovasc Pharmacol. 2006;48(6):280–5.

    Article  CAS  PubMed  Google Scholar 

  31. Li F, Xia W, Li A, et al. Long-term inhibition of Rho kinase with fasudil attenuates high flow induced pulmonary artery remodeling in rats. Pharmacol Res. 2007;55(1):64–71.

    Article  CAS  PubMed  Google Scholar 

  32. Hisaoka T, Yano M, Ohkusa T, et al. Enhancement of Rho/Rho-kinase system in regulation of vascular smooth muscle contraction in tachycardia-induced heart failure. Cardiovasc Res. 2001;49(2):319–29.

    Article  CAS  PubMed  Google Scholar 

  33. Yamashita K, Kotani Y, Nakajima Y, et al. Fasudil, a Rho kinase (ROCK) inhibitor, protects against ischemic neuronal damage in vitro and in vivo by acting directly on neurons. Brain Res. 2007;1154:215–24.

    Article  CAS  PubMed  Google Scholar 

  34. Fukumoto Y, Matoba T, Ito A, et al. Acute vasodilator effects of a Rho-kinase inhibitor, fasudil, in patients with severe pulmonary hypertension. Heart. 2005;91(3):391–2.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Ishikura K, Yamada N, Ito M, et al. Beneficial acute effects of Rho-kinase inhibitor in patients with pulmonary arterial hypertension. Circ J. 2006;70(2):174–8.

    Article  CAS  PubMed  Google Scholar 

  36. Fujita H, Fukumoto Y, Saji K, et al. Acute vasodilator effects of inhaled fasudil, a specific Rho-kinase inhibitor, in patients with pulmonary arterial hypertension. Heart Vessels. 2010;25(2):144–9.

    Article  PubMed  Google Scholar 

  37. Kojonazarov B, Myrzaakhmatova A, Sooronbaev T, et al. Effects of Fasudil in patients with high-altitude pulmonary hypertension. Eur Respir J. 2012;39(2):496–8.

    Article  CAS  PubMed  Google Scholar 

  38. Uehata M, Ishizaki T, Satoh H, et al. Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension. Nature. 1997;389(6654):990–4.

    Article  CAS  PubMed  Google Scholar 

  39. Fukumoto Y, Yamada N, Matsubara H, et al. Double-blind, placebo-controlled clinical trial with a Rho-kinase inhibitor in pulmonary arterial hypertension. Circ J. 2013;77(10):2619–25.

    Article  CAS  PubMed  Google Scholar 

  40. Said SI, Mutt V. Polypeptide with broad biological activity: isolation from small intestine. Science. 1970;169:1217–8.

    Article  CAS  PubMed  Google Scholar 

  41. Maruno K, Absood A, Said SI. VIP inhibits basal and histamine-stimulated proliferation of human airway smooth muscle cells. Am J Physiol. 1995;268:L1047–51.

    CAS  PubMed  Google Scholar 

  42. Saga T, Said SI. Vasoactive intestinal peptide relaxes isolated strips of human bronchus, pulmonary artery, and lung parenchyma. Trans Assoc Am Physicians. 1984;97:304–10.

    CAS  PubMed  Google Scholar 

  43. Hu J, Sharifi-Sanjani M, Shiva S, et al. Nitrite prevents right ventricular failure and remodeling induced by pulmonary artery banding. Circulation. 2013;128(22):A16923.

    Google Scholar 

  44. Nandiwada PA, Kadowitz PJ, Said SI, et al. Pulmonary vasodilator responses to vasoactive intestinal peptide in the cat. J Appl Physiol. 1985;58(5):1723–8.

    CAS  PubMed  Google Scholar 

  45. Hashimoto H, Negishi M, Ichikawa A. Identification of a prostacyclin receptor coupled to the adenylate cyclase system via a stimulatory GTP-binding protein in mouse mastocytoma P-815 cells. Prostaglandins. 1990;40(5):491–505.

    Article  CAS  PubMed  Google Scholar 

  46. Said SI, Hamidi SA, Dickman KG, et al. Moderate pulmonary arterial hypertension in male mice lacking the vasoactive intestinal peptide gene. Circulation. 2007;115:1260–8.

    CAS  PubMed  Google Scholar 

  47. Haydar S, Sarti JF, Grisoni ER. Intravenous vasoactive intestinal polypeptide lowers pulmonary-to-systemic vascular resistance ratio in a neonatal piglet model of pulmonary arterial hypertension. J Pediatr Surg. 2007;42:758–64.

    Article  PubMed  Google Scholar 

  48. Said SI, Hamidi SA. Pharmacogenomics in pulmonary arterial hypertension: toward a mechanistic, target-based approach to therapy. Pulm Circ. 2011;1(3):383–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Petkov V, Mosgoeller W, Ziesche R, et al. Vasoactive intestinal peptide as a new drug for treatment of primary pulmonary hypertension. J Clin Invest. 2003;111:1339–46.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Leuchte HH, Baezner C, Baumgartner RA, et al. Inhalation of vasoactive intestinal peptide in pulmonary hypertension. Eur Respir J. 2008;32(5):1289–94.

    Article  CAS  PubMed  Google Scholar 

  51. Hamidi SA, Lin RZ, Szema AM, et al. VIP and endothelin receptor antagonist: an effective combination against experimental pulmonary arterial hypertension. Respir Res. 2011;12:141.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Dempsie Y, MacLean MR. Pulmonary hypertension: therapeutic targets within the serotonin system. Br J Pharmacol. 2008;155:455–62.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Eddahibi S, Adnot S. The serotonin pathway in pulmonary hypertension. Arch Mal Coeur Vaiss. 2006;99:621–5.

    CAS  PubMed  Google Scholar 

  54. Eddahibi S, Raffestin B, Hamon M, et al. Is the serotonin transporter involved in the pathogenesis of pulmonary hypertension? J Lab Clin Med. 2002;139:194–201.

    Article  CAS  PubMed  Google Scholar 

  55. Eddahibi S, Raffestin B, Pham I, et al. Treatment with 5-HT potentiates development of pulmonary hypertension in chronically hypoxic rats. Am J Physiol. 1997;272(3 Pt 2):H1173–81.

    CAS  PubMed  Google Scholar 

  56. Guibert C, Marthan R, Savineau JP. 5-HT induces an arachidonic acid-sensitive calcium influx in rat small intrapulmonary artery. Am J Physiol Lung Cell Mol Physiol. 2004;286(6):L1228–36.

    Article  CAS  PubMed  Google Scholar 

  57. Liu JQ, Folz RJ. Extracellular superoxide enhances 5-HT-induced murine pulmonary artery vasoconstriction. Am J Physiol Lung Cell Mol Physiol. 2004;287:L111–8.

    Article  CAS  PubMed  Google Scholar 

  58. Deuchar GA, Hicks MN, MacLean MR. The role of 5-hydroxytryptamine in the control of pulmonary vascular tone in a rabbit model of pulmonary hypertension secondary to left ventricular dysfunction. Pulm Pharmacol Ther. 2005;18(1):23–31.

    Article  CAS  PubMed  Google Scholar 

  59. Liu Y, Tian H, Yan X, et al. Serotonin inhibits apoptosis of pulmonary artery smooth muscle cells through 5-HT2A receptors involved in the pulmonary artery remodeling of pulmonary artery hypertension. Exp Lung Res. 2013;39(2):70–9.

    Article  PubMed  CAS  Google Scholar 

  60. Liu DB, Hu J, Zhang MK, et al. Low-dose ketamine combined with pentobarbital in a miniature porcine model for a cardiopulmonary bypass procedure: a randomized controlled study. Eur J Anaesthesiol. 2009;26(5):389–95.

    Article  CAS  PubMed  Google Scholar 

  61. Vane J, Corin RE. Prostacyclin: a vascular mediator. Eur J Vasc Endovasc Surg. 2003;26(6):571–8.

    Article  CAS  PubMed  Google Scholar 

  62. Morecroft I, Loughlin L, Nilsen M, et al. Functional interactions between 5-hydroxytryptamine receptors and the serotonin transporter in pulmonary arteries. J Pharmacol Exp Ther. 2005;313(2):539–48.

    Article  CAS  PubMed  Google Scholar 

  63. Guignabert C, Raffestin B, Benferhat R, et al. Serotonin transporter inhibition prevents and reverses monocrotaline-induced pulmonary hypertension in rats. Circulation. 2005;111:2812–9.

    Article  CAS  PubMed  Google Scholar 

  64. Lushaj EB, Hu J, Haworth R, et al. Intravital microscopy to study myocardial engraftment. Interact CardioVasc Thorac Surg. 2012;15(1):5–9.

    Article  PubMed Central  PubMed  Google Scholar 

  65. Morecroft I, Pang L, Baranowska M, et al. In vivo effects of a combined 5-HT1B receptor/SERT antagonist in experimental pulmonary hypertension. Cardiovasc Res. 2010;85(3):593–603.

    Article  CAS  PubMed  Google Scholar 

  66. Marcos E, Adnot S, Pham MH, et al. Serotonin transporter inhibitors protect against hypoxic pulmonary hypertension. Am J Respir Crit Care Med. 2003;168:487–93.

    Article  PubMed  Google Scholar 

  67. Zhu SP, Mao ZF, Huang J, et al. Continuous fluoxetine administration prevents recurrence of pulmonary arterial hypertension and prolongs survival in rats. Clin Exp Pharmacol Physiol. 2009;36:e1–5.

    Article  CAS  PubMed  Google Scholar 

  68. Shah SJ, Gomberg-Maitland M, Thenappan T, et al. Selective serotonin reuptake inhibitors and the incidence and outcome of pulmonary hypertension. Chest. 2009;136(3):694–700.

    CAS  PubMed  Google Scholar 

  69. Kawut SM, Horn EM, Berekashvili KK, et al. Selective serotonin reuptake inhibitor use and outcomes in pulmonary arterial hypertension. Pulm Pharmacol Ther. 2006;19(5):370–4.

    Article  CAS  PubMed  Google Scholar 

  70. Dhalla IA, Juurlink DN, Gomes T, et al. Selective serotonin reuptake inhibitors and pulmonary arterial hypertension: a case–control study. Chest. 2012;141(2):348–53.

    Article  PubMed  Google Scholar 

  71. Sadoughi A, Roberts KE, Preston IR, et al. Use of selective serotonin reuptake inhibitors and outcomes in pulmonary arterial hypertension. Chest. 2013;144(2):531–41.

    Article  CAS  PubMed  Google Scholar 

  72. Lin RZ, Dreyzin A, Aamodt K, et al. Functional endothelial progenitor cells from cryopreserved umbilical cord blood. Cell Transplant. 2011;20(4):515–22.

    Article  PubMed Central  PubMed  Google Scholar 

  73. Ormiston ML, Deng Y, Stewart DJ, et al. Innate immunity in the therapeutic actions of endothelial progenitor cells in pulmonary hypertension. Am J Respir Cell Mol Biol. 2010;43(5):546–54.

    Article  CAS  PubMed  Google Scholar 

  74. Vanneaux V, El-Ayoubi F, Delmau C, et al. In vitro and in vivo analysis of endothelial progenitor cells from cryopreserved umbilical cord blood: are we ready for clinical application? Cell Transplant. 2010;19(9):1143–55.

    Article  PubMed  Google Scholar 

  75. Lozonschi L, Bombien R, Osaki S, et al. Transapical mitral valved stent implantation: a survival series in swine. J Thorac Cardiovasc Surg. 2010;140(2):422–6.

    Article  PubMed  Google Scholar 

  76. Wang XX, Zhang FR, Shang YP, et al. Transplantation of autologous endothelial progenitor cells may be beneficial in patients with idiopathic pulmonary arterial hypertension: a pilot randomized controlled trial. J Am Coll Cardiol. 2007;49(14):1566–71.

    Article  CAS  PubMed  Google Scholar 

  77. Yip HK, Chang LT, Sun CK, et al. Autologous transplantation of bone marrow-derived endothelial progenitor cells attenuates monocrotaline-induced pulmonary arterial hypertension in rats. Crit Care Med. 2008;36(3):873–80.

    Article  PubMed  Google Scholar 

  78. Zhao YD, Courtman DW, Deng Y, et al. Rescue of monocrotaline-induced pulmonary arterial hypertension using bone marrow derived endothelial-like progenitor cells: efficacy of combined cell and eNOS gene therapy in established disease. Circ Res. 2005;96(4):442–50.

    Article  CAS  PubMed  Google Scholar 

  79. Asahara T, Murohara T, Sullivan A, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science. 1997;275(5302):964–7.

    Article  CAS  PubMed  Google Scholar 

  80. Peichev M, Naiyer AJ, Pereira D, et al. Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood. 2000;95(3):952–8.

    CAS  PubMed  Google Scholar 

  81. Urbich C, Dimmeler S. Endothelial progenitor cells: characterization and role in vascular biology. Circ Res. 2004;95(4):343–53.

    Article  CAS  PubMed  Google Scholar 

  82. Ding DC, Shyu WC, Lin SZ, et al. The role of endothelial progenitor cells in ischemic cerebral and heart diseases. Cell Transplant. 2007;16(3):273–84.

    Article  PubMed  Google Scholar 

  83. Marsboom G, Janssens S. Endothelial progenitor cells: new perspectives and applications in cardiovascular therapies. Expert Rev Cardiovasc Ther. 2008;6(5):687–701.

    Article  CAS  PubMed  Google Scholar 

  84. Diller GP, van Eijl S, Okonko DO, et al. Circulating endothelial progenitor cells in patients with Eisenmenger syndrome and idiopathic pulmonary arterial hypertension. Circulation. 2008;117(23):3020–30.

    Article  CAS  PubMed  Google Scholar 

  85. Fadini GP, Schiavon M, Rea F, et al. Depletion of endothelial progenitor cells may link pulmonary fibrosis and pulmonary hypertension. Am J Respir Crit Care Med. 2007;176(7):724–5.

    Article  PubMed  Google Scholar 

  86. Junhui Z, Xingxiang W, Guosheng F, et al. Reduced number and activity of circulating endothelial progenitor cells in patients with idiopathic pulmonary arterial hypertension. Respir Med. 2008;102(7):1073–9.

    Article  PubMed  Google Scholar 

  87. Asosingh K, Aldred MA, Vasanji A, et al. Circulating angiogenic precursors in idiopathic pulmonary arterial hypertension. Am J Pathol. 2008;172(3):615–27.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  88. Marsboom G, Pokreisz P, Gheysens O, et al. Sustained endothelial progenitor cell dysfunction after chronic hypoxia-induced pulmonary hypertension. Stem Cells. 2008;26(4):1017–26.

    Article  PubMed  Google Scholar 

  89. Toshner M, Voswinckel R, Southwood M, et al. Evidence of dysfunction of endothelial progenitors in pulmonary arterial hypertension. Am J Respir Crit Care Med. 2009;180(8):780–7.

    Article  PubMed Central  PubMed  Google Scholar 

  90. Takahashi M, Nakamura T, Toba T. Transplantation of endothelial progenitor cells into the lung to alleviate pulmonary hypertension in dogs. Tissue Eng. 2004;10(5–6):771–9.

    Article  PubMed  Google Scholar 

  91. Xia L, Fu GS, Yang JX, et al. Endothelial progenitor cells may inhibit apoptosis of pulmonary microvascular endothelial cells: new insights into cell therapy for pulmonary arterial hypertension. Cytotherapy. 2009;11(4):492–502.

    Article  CAS  PubMed  Google Scholar 

  92. Nagaya N, Kangawa K, Kanda M, et al. Hybrid cell-gene therapy for pulmonary hypertension based on phagocytosing action of endothelial progenitor cells. Circulation. 2003;108:889–95.

    Article  CAS  PubMed  Google Scholar 

  93. Wei L, Zhu W, Xia L, et al. Therapeutic effect of eNOS-transfected endothelial progenitor cells on hemodynamic pulmonary arterial hypertension. Hypertens Res. 2013;36:414–21.

    Article  CAS  PubMed  Google Scholar 

  94. Diller GP, van Eijl S, Okonko DO, et al. Circulating endothelial progenitor cells in patients with Eisenmenger syndrome and idiopathic pulmonary arterial hypertension. Circulation. 2008;117:3020–30.

    Article  CAS  PubMed  Google Scholar 

  95. Hill JM, Zalos G, Halcox JP, et al. Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med. 2003;348(7):593–600.

    Article  PubMed  Google Scholar 

  96. Asahara T, Takahashi T, Masuda H, et al. VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells. EMBO J. 1999;18(14):3964–72.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  97. Werner N, Junk S, Laufs U, et al. Intravenous transfusion of endothelial progenitor cells reduces neointima formation after vascular injury. Circ Res. 2003;93(2):e17–24.

    Article  CAS  PubMed  Google Scholar 

  98. Rehman J. Feeling the elephant of cardiovascular cell therapy. Circulation. 2010;121(2):197–9.

    Article  PubMed Central  PubMed  Google Scholar 

  99. Gnecchi M, Zhang Z, Ni A, et al. Paracrine mechanisms in adult stem cell signaling and therapy. Circ Res. 2008;103(11):1204–19.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  100. Santhanam AV, Smith LA, He T, et al. Endothelial progenitor cells stimulate cerebrovascular production of prostacyclin by paracrine activation of cyclooxygenase-2. Circ Res. 2007;100(9):1379–88.

    Article  CAS  PubMed  Google Scholar 

  101. Urbich C, Aicher A, Heeschen C, et al. Soluble factors released by endothelial progenitor cells promote migration of endothelial cells and cardiac resident progenitor cells. J Mol Cell Cardiol. 2005;39(5):733–42.

    Article  CAS  PubMed  Google Scholar 

  102. Zhu JH, Wang XX, Zhang FR, et al. Safety and efficacy of autologous endothelial progenitor cells transplantation in children with idiopathic pulmonary arterial hypertension: open-label pilot study. Pediatr Transplant. 2008;12(6):650–5.

    Article  PubMed  Google Scholar 

  103. Yoder MC, Mead LE, Prater D, et al. Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals. Blood. 2007;109:1801–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  104. Hirschi KK, Ingram DA, Yoder MC. Assessing identity, phenotype, and fate of endothelial progenitor cells. Arterioscler Thromb Vasc Biol. 2008;28:1584–95.

    Article  CAS  PubMed  Google Scholar 

  105. Baker CD, Seedorf GJ, Wisniewski BL, et al. Endothelial colony-forming cell conditioned media promote angiogenesis in vitro and prevent pulmonary hypertension in experimental bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol. 2013;305(1):L73–81.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  106. Stacher E, Graham BB, Hunt JM, et al. Modern age pathology of pulmonary arterial hypertension. Am J Respir Crit Care Med. 2012;186:261–72.

    Article  PubMed Central  PubMed  Google Scholar 

  107. Tamosiuniene R, Tian W, Dhillon G, et al. Regulatory T cells limit vascular endothelial injury and prevent pulmonary hypertension. Circ Res. 2011;109:867–79.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  108. Rabinovitch M, Guignabert C, Humbert M, et al. Inflammation and immunity in the pathogenesis of pulmonary arterial hypertension. Circ Res. 2014;115:165–75.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  109. Meloche J, Renard S, Provencher S, et al. Anti-inflammatory and immunosuppressive agents in PAH. Handb Exp Pharmacol. 2013;218:437–76.

    Article  CAS  PubMed  Google Scholar 

  110. Kim YM, Haghighat L, Spiekerkoetter E, et al. Neutrophil elastase is produced by pulmonary artery smooth muscle cells and is linked to neointimal lesions. Am J Pathol. 2011;179(3):1560–72.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  111. Bardoxolone methyl evaluation in patients with pulmonary arterial hypertension (PAH)—LARIAT. Reata Pharmaceuticals. http://clinicaltrials.gov/ct2/show/NCT02036970. Accessed May 2015.

  112. Spiekerkoetter E, Tian X, Cai J, et al. FK506 activates BMPR2, rescues endothelial dysfunction, and reverses pulmonary hypertension. J Clin Invest. 2013;123:3600–13.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  113. Spiekerkoetter E, Zamanian R. FK506 (Tacrolimus) in pulmonary arterial hypertension (TransformPAH). http://clinicaltrials.gov/ct2/show/NCT01647945. Accessed May 2015.

  114. Nicolls M, Badesch DB, Medsger TA. Rituximab for treatment of systemic sclerosis-associated pulmonary arterial hypertension (SSc-PAH). http://clinicaltrials.gov/ct2/show/NCT01086540. Accessed May 2015.

  115. Amsellem V, Lipskaia L, Abid S, et al. CCR5 as a treatment target in pulmonary arterial hypertension. Circulation. 2014;130(11):880–91.

    Article  CAS  PubMed  Google Scholar 

  116. Lutter G, Quaden R, Osaki S, et al. Off-pump transapical mitral valve replacement. Eur J Cardiothorac Surg. 2009;36(1):124–8.

    Article  PubMed  Google Scholar 

  117. Charo IF, Ransohoff RM. The many roles of chemokines and chemokine receptors in inflammation. N Engl J Med. 2006;354:610–21.

    Article  CAS  PubMed  Google Scholar 

  118. Schecter AD, Calderon TM, Berman AB, et al. Human vascular smooth muscle cells possess functional CCR5. J Biol Chem. 2000;275:5466–71.

    Article  CAS  PubMed  Google Scholar 

  119. Ishida Y, Kimura A, Kuninaka Y, et al. Pivotal role of the CCL5/CCR5 interaction for recruitment of endothelial progenitor cells in mouse wound healing. J Clin Invest. 2012;122:711–21.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  120. Dragic T, Litwin V, Allaway GP, et al. HIV-1 entry into CD4+ cells is mediated by the chemokine receptor CC-CKR-5. Nature. 1996;381:667–73.

    Article  CAS  PubMed  Google Scholar 

  121. Deng H, Liu R, Ellmeier W, et al. Identification of a major co-receptor for primary isolates of HIV-1. Nature. 1996;381:661–6.

    Article  CAS  PubMed  Google Scholar 

  122. Combadiere C, Potteaux S, Rodero M, et al. Combined inhibition of CCL2, CX3CR1, and CCR5 abrogates Ly6C(hi) and Ly6C(lo) monocytosis and almost abolishes atherosclerosis in hypercholesterolemic mice. Circulation. 2008;117:1649–57.

    Article  CAS  PubMed  Google Scholar 

  123. Papkoff J, Rubinfeld B, Schryver B, et al. Wnt-1 regulates free pools of catenins and stabilizes APC-catenin complexes. Mol Cell Biol. 1996;16:2128–34.

    CAS  PubMed Central  PubMed  Google Scholar 

  124. Shulman JM, Perrimon N, Axelrod JD, et al. Frizzled signaling and the developmental control of cell polarity. Trends Genet. 1998;14:452–8.

    Article  CAS  PubMed  Google Scholar 

  125. Veeman MT, Axelrod JD, Moon RT. A second canon. Functions and mechanisms of beta-catenin-independent Wnt signaling. Dev Cell. 2003;5:367–77.

    Article  CAS  PubMed  Google Scholar 

  126. Laumanns IP, Fink L, Wilhelm J, et al. The noncanonical WNT pathway is operative in idiopathic pulmonary arterial hypertension. Am J Respir Cell Mol Biol. 2009;40:683–91.

    Article  CAS  PubMed  Google Scholar 

  127. de Jesus Perez VA, Alastalo TP, Wu JC, et al. Bone morphogenetic protein 2 induces pulmonary angiogenesis via Wnt-beta-catenin and Wnt-RhoA-Rac1 pathways. J Cell Biol. 2009;184:83–99.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  128. Yu XM, Wang L, JF Li, et al. Wnt5a inhibits hypoxia-induced pulmonary arterial smooth muscle cell proliferation by downregulation of β-catenin. Am J Physiol Lung Cell Mol Physiol. 2013;304:L103–11.

    Article  CAS  PubMed  Google Scholar 

  129. Laumanns IP, Fink L, Wilhelm J, et al. The noncanonical WNT pathway is operative in idiopathic pulmonary arterial hypertension. Am J Respir Cell Mol Biol. 2009;40(6):683–91.

    Article  CAS  PubMed  Google Scholar 

  130. Lin C, Lu W, Zhai L, et al. Mesd is a general inhibitor of different Wnt ligands in Wnt/LRP signaling and inhibits PC-3 tumor growth in vivo. FEBS Lett. 2011;585(19):3120–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  131. Alapati D, Rong M, Chen S, et al. Inhibition of LRP5/6-mediated Wnt/β-catenin signaling by Mesd attenuates hyperoxia-induced pulmonary hypertension in neonatal rats. Pediatr Res. 2013;73(6):719–25.

    Article  CAS  PubMed  Google Scholar 

  132. Alapati D, Rong M, Chen S, et al. Inhibition of β-catenin signaling improves alveolarization and reduces pulmonary hypertension in experimental bronchopulmonary dysplasia. Am J Respir Cell Mol Biol. 2014;51:104–13.

    Article  PubMed  CAS  Google Scholar 

  133. West JD, Austin ED, Gaskill C, et al. Identification of a common Wnt-associated genetic signature across multiple cell types in pulmonary arterial hypertension. Am J Physiol Cell Physiol. 2014;307:C415–30.

    Article  CAS  PubMed  Google Scholar 

  134. Farh KK, Grimson A, Jan C, et al. The widespread impact of mammalian microRNAs on mRNA repression and evolution. Science. 2005;310:1817–21.

    Article  CAS  PubMed  Google Scholar 

  135. Voelkel NF, Cool C, Lee SD, et al. Primary pulmonary hypertension between inflammation and cancer. Chest. 1998;114(3 Suppl.):225S–30S.

    Article  CAS  PubMed  Google Scholar 

  136. Paulin R, Courboulin A, Barrier M, et al. From oncoproteins/tumor suppressors to microRNAs, the newest therapeutic targets for pulmonary arterial hypertension. J Mol Med. 2011;89:1089–101.

    Article  CAS  PubMed  Google Scholar 

  137. Drake JI, Bogaard HJ, Mizuno S, et al. Molecular signature of a right heart failure program in chronic severe pulmonary hypertension. Am J Respir Cell Mol Biol. 2011;45:1239–47.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  138. McDonald RA, Hata A, MacLean MR, et al. MicroRNA and vascular remodelling in acute vascular injury and pulmonary vascular remodeling. Cardiovasc Res. 2012;93:594–604.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  139. Courboulin A, Paulin R, Giguère NJ, et al. Role for miR-204 in human pulmonary arterial hypertension. J Exp Med. 2011;208:535–48.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  140. Kim J, Kang Y, Kojima Y, et al. An endothelial apelin-FGF link mediated by miR-424 and miR-503 is disrupted in pulmonary arterial hypertension. Nat Med. 2013;19:74–82.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  141. Caruso P, MacLean MR, Khanin R, et al. Dynamic changes in lung microRNA profiles during the development of pulmonary hypertension due to chronic hypoxia and monocrotaline. Arterioscler Thromb Vasc Biol. 2010;30:716–23.

    Article  CAS  PubMed  Google Scholar 

  142. Pullamsetti SS, Doebele C, Fischer A, et al. Inhibition of microRNA-17 improves lung and heart function in experimental pulmonary hypertension. Am J Respir Crit Care Med. 2012;185:409–19.

    Article  CAS  PubMed  Google Scholar 

  143. Bouchie A. First microRNA mimic enters clinic. Nat Biotechnol. 2013;31:577.

    Article  CAS  PubMed  Google Scholar 

  144. Janssen HL, Reesink HW, Lawitz EJ, et al. Treatment of HCV infection by targeting microRNA. N Engl J Med. 2013;368:1685–94.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Sergei Snovida for helpful comments on the manuscript and Elfy Chiang for the graphic assistance.

Compliance with ethical standards

There are no conflicts of interests to declare for Jian Hu, Qinzi Xu, Charles McTiernan, Yen-Chun Lai, and David Osei-Hwedieh. Mark Gladwin receives National Institutes of Health (NIH) grant funding, and is a consultant for Bayer for sickle cell disease. He is also the co-inventor of an NIH patent for the use of nitrite for cardiovascular indications. He also receives royalties as co-author of a textbook of medical students.

No financial assistance was received for preparing this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, J., Xu, Q., McTiernan, C. et al. Novel Targets of Drug Treatment for Pulmonary Hypertension. Am J Cardiovasc Drugs 15, 225–234 (2015). https://doi.org/10.1007/s40256-015-0125-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40256-015-0125-4

Keywords

Navigation