Skip to main content
Log in

Efficacy and Safety of Lomitapide in Hypercholesterolemia

  • Systematic Review
  • Published:
American Journal of Cardiovascular Drugs Aims and scope Submit manuscript

Abstract

Background

Despite extensive use of statins, patients with hypercholesterolemia, especially homozygous familial hypercholesterolemia (HoFH), do not achieve recommended targets of low-density lipoprotein cholesterol (LDL-C). There is an urgent need for novel options that could reduce proatherogenic lipoprotein cholesterol levels. Lomitapide, a microsomal triglyceride transport protein (MTP) inhibitor, was approved three years ago as an orphan drug for the treatment of patients with HoFH.

Objective

Our aim was to systematically evaluate the efficacy and safety of lomitapide and to provide guidance for clinicians.

Methods

We searched the PubMed, Embase, and Cochrane library databases and ClinicalTrials.gov to identify valid studies published before 31 October 2016 that included lomitapide-treated patients who did or did not undergo lipid-lowering therapy. We assessed the quality of different studies. Data were extracted and evaluated for quality by two reviewers.

Results

Studies reporting lomitapide therapy included one randomized controlled trial, three single-arm studies, and five case reports. In patients with HoFH, lomitapide reduced levels of LDL-C, total cholesterol, apolipoprotein B, and triglycerides with or without other lipid-lowering therapy, including apheresis. In non-HoFH patients with moderate hypercholesterolemia and hypertriglyceridemia, lomitapide also showed favorable effects on changes in LDL-C and triglycerides. However, both HoFH and non-HoFH patients experienced a reduction in high-density lipoprotein cholesterol (HDL-C) and apolipoprotein A-1 (ApoA-1). The most common adverse event was gastrointestinal disorder, and others included liver transaminase elevation and hepatic fat accumulation. Long-term use of lomitapide was associated with an increased risk of progressing to steatohepatitis and fibrosis.

Conclusions

Lomitapide improved most lipid parameters but not HDL-C or ApoA-1 in patients with HoFH and in non-HoFH patients, and gastrointestinal disorders were the most common adverse event. The possible benefits of lomitapide should be further evaluated and viewed against its possible long-term side effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Sniderman AD, Williams K, Contois JH, Monroe HM, McQueen MJ, de Graaf J, et al. A meta-analysis of low-density lipoprotein cholesterol, non-high-density lipoprotein cholesterol, and apolipoprotein B as markers of cardiovascular risk. Circ Cardiovasc Qual Outcomes. 2011;4(3):337–45. doi:10.1161/circoutcomes.110.959247.

    Article  PubMed  Google Scholar 

  2. Benn M, Watts GF, Tybjaerg-Hansen A, Nordestgaard BG. Familial hypercholesterolemia in the danish general population: prevalence, coronary artery disease, and cholesterol-lowering medication. J Clin Endocrinol Metab. 2012;97(11):3956–64. doi:10.1210/jc.2012-1563.

    Article  CAS  PubMed  Google Scholar 

  3. Sjouke B, Kusters DM, Kindt I, Besseling J, Defesche JC, Sijbrands EJ, et al. Homozygous autosomal dominant hypercholesterolaemia in the Netherlands: prevalence, genotype-phenotype relationship, and clinical outcome. Eur Heart J. 2015;36(9):560–5. doi:10.1093/eurheartj/ehu058.

    Article  PubMed  Google Scholar 

  4. Do R, Stitziel NO, Won HH, Jorgensen AB, Duga S, Angelica Merlini P, et al. Exome sequencing identifies rare LDLR and APOA5 alleles conferring risk for myocardial infarction. Nature. 2015;518(7537):102–6. doi:10.1038/nature13917.

    Article  CAS  PubMed  Google Scholar 

  5. Cuchel M, Bruckert E, Ginsberg HN, Raal FJ, Santos RD, Hegele RA, et al. Homozygous familial hypercholesterolaemia: new insights and guidance for clinicians to improve detection and clinical management. A position paper from the Consensus Panel on Familial Hypercholesterolaemia of the European Atherosclerosis Society. Eur Heart J. 2014;35(32):2146–57. doi:10.1093/eurheartj/ehu274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Widhalm K, Binder CB, Kreissl A, Aldover-Macasaet E, Fritsch M, Kroisboeck S, et al. Sudden death in a 4-year-old boy: a near-complete occlusion of the coronary artery caused by an aggressive low-density lipoprotein receptor mutation (W556R) in homozygous familial hypercholesterolemia. J Pediatr. 2011;158(1):167. doi:10.1016/j.jpeds.2010.06.027.

    Article  PubMed  Google Scholar 

  7. Baigent C, Blackwell L, Emberson J, Holland LE, Reith C, Bhala N, et al. Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet. 2010;376(9753):1670–81. doi:10.1016/s0140-6736(10)61350-5.

    Article  CAS  PubMed  Google Scholar 

  8. Pijlman AH, Huijgen R, Verhagen SN, Imholz BP, Liem AH, Kastelein JJ, et al. Evaluation of cholesterol lowering treatment of patients with familial hypercholesterolemia: a large cross-sectional study in The Netherlands. Atherosclerosis. 2010;209(1):189–94. doi:10.1016/j.atherosclerosis.2009.09.014.

    Article  CAS  PubMed  Google Scholar 

  9. Mundal L, Sarancic M, Ose L, Iversen PO, Borgan JK, Veierod MB, et al. Mortality among patients with familial hypercholesterolemia: a registry-based study in Norway, 1992–2010. J Am Heart Assoc. 2014;3(6):e001236. doi:10.1161/jaha.114.001236.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Ito MK, Watts GF. Challenges in the diagnosis and treatment of homozygous familial hypercholesterolemia. Drugs. 2015;75(15):1715–24. doi:10.1007/s40265-015-0466-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Stein EA, Dufour R, Gagne C, Gaudet D, East C, Donovan JM, et al. Apolipoprotein B synthesis inhibition with mipomersen in heterozygous familial hypercholesterolemia: results of a randomized, double-blind, placebo-controlled trial to assess efficacy and safety as add-on therapy in patients with coronary artery disease. Circulation. 2012;126(19):2283–92. doi:10.1161/circulationaha.112.104125.

    Article  CAS  PubMed  Google Scholar 

  12. Shiomi M, Ito T. MTP inhibitor decreases plasma cholesterol levels in LDL receptor-deficient WHHL rabbits by lowering the VLDL secretion. Eur J Pharmacol. 2001;431(1):127–31.

    Article  CAS  PubMed  Google Scholar 

  13. Cuchel M, Bloedon LT, Szapary PO, Kolansky DM, Wolfe ML, Sarkis A, et al. Inhibition of microsomal triglyceride transfer protein in familial hypercholesterolemia. N Engl J Med. 2007;356(2):148–56. doi:10.1056/NEJMoa061189.

    Article  CAS  PubMed  Google Scholar 

  14. Wetterau JR, Aggerbeck LP, Bouma ME, Eisenberg C, Munck A, Hermier M, et al. Absence of microsomal triglyceride transfer protein in individuals with abetalipoproteinemia. Science. 1992;258(5084):999–1001.

    Article  CAS  PubMed  Google Scholar 

  15. Cuchel M, Meagher EA, du Toit Theron H, Blom DJ, Marais AD, Hegele RA, et al. Efficacy and safety of a microsomal triglyceride transfer protein inhibitor in patients with homozygous familial hypercholesterolaemia: a single-arm, open-label, phase 3 study. Lancet. 2013;381(9860):40–6. doi:10.1016/s0140-6736(12)61731-0.

    Article  CAS  PubMed  Google Scholar 

  16. Yahya R, Favari E, Calabresi L, Verhoeven AJ, Zimetti F, Adorni MP, et al. Lomitapide affects HDL composition and function. Atherosclerosis. 2016;251:15–8. doi:10.1016/j.atherosclerosis.2016.05.005.

    Article  CAS  PubMed  Google Scholar 

  17. Alonso R, Mata P, Alonso YGM, de Andres R. Homozygous familial hypercholesterolemia. First case in Spain treated with lomitapide, an inhibitor of the synthesis of lipoproteins with apolipoprotein B. Med Clin (Barc). 2015;145(5):229–30. doi:10.1016/j.medcli.2014.11.002.

    Article  Google Scholar 

  18. Roeters van Lennep J, Averna M, Alonso R. Treating homozygous familial hypercholesterolemia in a real-world setting: experiences with lomitapide. J Clin Lipidol. 2015;9(4):607–17. doi:10.1016/j.jacl.2015.05.001.

    Article  PubMed  Google Scholar 

  19. Stefanutti C, Morozzi C, Di Giacomo S, Sovrano B, Mesce D, Grossi A. Management of homozygous familial hypercholesterolemia in real-world clinical practice: a report of 7 Italian patients treated in Rome with lomitapide and lipoprotein apheresis. J Clin Lipidol. 2016;10(4):782–9. doi:10.1016/j.jacl.2016.02.009.

    Article  PubMed  Google Scholar 

  20. Kolovou GD, Kolovou V, Papadopoulou A, Watts GF. MTP gene variants and response to lomitapide in patients with homozygous familial hypercholesterolemia. J Atheroscler Thromb. 2016;23(7):878–83. doi:10.5551/jat.34777.

    Article  PubMed  Google Scholar 

  21. Samaha FF, McKenney J, Bloedon LT, Sasiela WJ, Rader DJ. Inhibition of microsomal triglyceride transfer protein alone or with ezetimibe in patients with moderate hypercholesterolemia. Nat Clin Pract Cardiovasc Med. 2008;5(8):497–505. doi:10.1038/ncpcardio1250.

    Article  CAS  PubMed  Google Scholar 

  22. Sacks FM, Stanesa M, Hegele RA. Severe hypertriglyceridemia with pancreatitis: thirteen years’ treatment with lomitapide. JAMA Intern Med. 2014;174(3):443–7. doi:10.1001/jamainternmed.2013.13309.

    Article  CAS  PubMed  Google Scholar 

  23. Kroon AA, van’t Hof MA, Demacker PN, Stalenhoef AF. The rebound of lipoproteins after LDL-apheresis. Kinetics and estimation of mean lipoprotein levels. Atherosclerosis. 2000;152(2):519–26.

    Article  CAS  PubMed  Google Scholar 

  24. Raal FJ, Santos RD, Blom DJ, Marais AD, Charng MJ, Cromwell WC, et al. Mipomersen, an apolipoprotein B synthesis inhibitor, for lowering of LDL cholesterol concentrations in patients with homozygous familial hypercholesterolaemia: a randomised, double-blind, placebo-controlled trial. Lancet. 2010;375(9719):998–1006. doi:10.1016/s0140-6736(10)60284-x.

    Article  CAS  PubMed  Google Scholar 

  25. Thomas GS, Cromwell WC, Ali S, Chin W, Flaim JD, Davidson M. Mipomersen, an apolipoprotein B synthesis inhibitor, reduces atherogenic lipoproteins in patients with severe hypercholesterolemia at high cardiovascular risk: a randomized, double-blind, placebo-controlled trial. J Am Coll Cardiol. 2013;62(23):2178–84. doi:10.1016/j.jacc.2013.07.081.

    Article  CAS  PubMed  Google Scholar 

  26. Reiner Z. Management of patients with familial hypercholesterolaemia. Nat Rev Cardiol. 2015;12(10):565–75. doi:10.1038/nrcardio.2015.92.

    Article  CAS  PubMed  Google Scholar 

  27. Stein EA, Honarpour N, Wasserman SM, Xu F, Scott R, Raal FJ. Effect of the proprotein convertase subtilisin/kexin 9 monoclonal antibody, AMG 145, in homozygous familial hypercholesterolemia. Circulation. 2013;128(19):2113–20. doi:10.1161/circulationaha.113.004678.

    Article  CAS  PubMed  Google Scholar 

  28. Raal FJ, Honarpour N, Blom DJ, Hovingh GK, Xu F, Scott R, et al. Inhibition of PCSK9 with evolocumab in homozygous familial hypercholesterolaemia (TESLA Part B): a randomised, double-blind, placebo-controlled trial. Lancet. 2015;385(9965):341–50. doi:10.1016/s0140-6736(14)61374-x.

    Article  CAS  PubMed  Google Scholar 

  29. Neef D, Berthold HK, Gouni-Berthold I. Lomitapide for use in patients with homozygous familial hypercholesterolemia: a narrative review. Expert Rev Clin Pharmacol. 2016;9(5):655–63. doi:10.1586/17512433.2016.1162095.

    Article  CAS  PubMed  Google Scholar 

  30. Goulooze SC, Cohen AF. Lomitapide. Br J Clin Pharmacol. 2015;80(2):179–81. doi:10.1111/bcp.12612.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Gouni-Berthold I, Berthold HK. Mipomersen and lomitapide: Two new drugs for the treatment of homozygous familial hypercholesterolemia. Atheroscler Suppl. 2015;18:28–34. doi:10.1016/j.atherosclerosissup.2015.02.005.

    Article  PubMed  Google Scholar 

  32. Milani RV, Lavie CJ. Lipid control in the modern era: an orphan’s tale of rags to riches. J Am Coll Cardiol. 2013;62(23):2185–7. doi:10.1016/j.jacc.2013.07.083.

    Article  CAS  PubMed  Google Scholar 

  33. Krzystanek M, Pedersen TX, Bartels ED, Kjaehr J, Straarup EM, Nielsen LB. Expression of apolipoprotein B in the kidney attenuates renal lipid accumulation. J Biol Chem. 2010;285(14):10583–90. doi:10.1074/jbc.M109.078006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nielsen LB, Sullivan M, Vanni-Reyes T, Goldberg IJ, Young SG. The DNA sequences required for apolipoprotein B expression in the heart are distinct from those required for expression in the intestine. J Mol Cell Cardiol. 1999;31(4):695–703. doi:10.1006/jmcc.1998.0918.

    Article  CAS  PubMed  Google Scholar 

  35. Li CM, Presley JB, Zhang X, Dashti N, Chung BH, Medeiros NE, et al. Retina expresses microsomal triglyceride transfer protein: implications for age-related maculopathy. J Lipid Res. 2005;46(4):628–40. doi:10.1194/jlr.M400428-JLR200.

    Article  CAS  PubMed  Google Scholar 

  36. Terasawa Y, Cases SJ, Wong JS, Jamil H, Jothi S, Traber MG, et al. Apolipoprotein B-related gene expression and ultrastructural characteristics of lipoprotein secretion in mouse yolk sac during embryonic development. J Lipid Res. 1999;40(11):1967–77.

    CAS  PubMed  Google Scholar 

  37. Sirtori CR, Pavanello C, Bertolini S. Microsomal transfer protein (MTP) inhibition-a novel approach to the treatment of homozygous hypercholesterolemia. Ann Med. 2014;46(7):464–74. doi:10.3109/07853890.2014.931100.

    Article  CAS  PubMed  Google Scholar 

  38. Stefanutti C, Blom DJ, Averna MR, Meagher EA, Theron H, Marais AD, et al. The lipid-lowering effects of lomitapide are unaffected by adjunctive apheresis in patients with homozygous familial hypercholesterolaemia—a post-hoc analysis of a Phase 3, single-arm, open-label trial. Atherosclerosis. 2015;240(2):408–14. doi:10.1016/j.atherosclerosis.2015.03.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Taubel J, Sumeray M, Lorch U, McLean A. Pharmacokinetics and pharmacodynamics of lomitapide in Japanese subjects. J Atheroscler Thromb. 2016;23(5):606–20. doi:10.5551/jat.30452.

    Article  CAS  PubMed  Google Scholar 

  40. Wetterau JR, Gregg RE, Harrity TW, Arbeeny C, Cap M, Connolly F, et al. An MTP inhibitor that normalizes atherogenic lipoprotein levels in WHHL rabbits. Science. 1998;282(5389):751–4.

    Article  CAS  PubMed  Google Scholar 

  41. Dhote V, Joharapurkar A, Kshirsagar S, Dhanesha N, Patel V, Patel A, et al. Inhibition of microsomal triglyceride transfer protein improves insulin sensitivity and reduces atherogenic risk in Zucker fatty rats. Clin Exp Pharmacol Physiol. 2011;38(5):338–44. doi:10.1111/j.1440-1681.2011.05513.x.

    Article  CAS  PubMed  Google Scholar 

  42. Jamil H, Gordon DA, Eustice DC, Brooks CM, Dickson JK Jr, Chen Y, et al. An inhibitor of the microsomal triglyceride transfer protein inhibits apoB secretion from HepG2 cells. Proc Natl Acad Sci USA. 1996;93(21):11991–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bakillah A, Nayak N, Saxena U, Medford RM, Hussain MM. Decreased secretion of ApoB follows inhibition of ApoB-MTP binding by a novel antagonist. Biochemistry. 2000;39(16):4892–9.

    Article  CAS  PubMed  Google Scholar 

  44. Raal FJ, Pilcher GJ, Panz VR, van Deventer HE, Brice BC, Blom DJ, et al. Reduction in mortality in subjects with homozygous familial hypercholesterolemia associated with advances in lipid-lowering therapy. Circulation. 2011;124(20):2202–7. doi:10.1161/circulationaha.111.042523.

    Article  CAS  PubMed  Google Scholar 

  45. Iqbal J, Boutjdir M, Rudel LL, Hussain MM. Intestine-specific MTP and global ACAT2 deficiency lowers acute cholesterol absorption with chylomicrons and HDLs. J Lipid Res. 2014;55(11):2261–75. doi:10.1194/jlr.M047951.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Stern L, Iqbal N, Seshadri P, Chicano KL, Daily DA, McGrory J, et al. The effects of low-carbohydrate versus conventional weight loss diets in severely obese adults: one-year follow-up of a randomized trial. Ann Intern Med. 2004;140(10):778–85.

    Article  PubMed  Google Scholar 

  47. Ornish D, Scherwitz LW, Billings JH, Brown SE, Gould KL, Merritt TA, et al. Intensive lifestyle changes for reversal of coronary heart disease. JAMA. 1998;280(23):2001–7.

    Article  CAS  PubMed  Google Scholar 

  48. Ikewaki K, Rader DJ, Zech LA, Brewer HB Jr. In vivo metabolism of apolipoproteins A-I and E in patients with abetalipoproteinemia: implications for the roles of apolipoproteins B and E in HDL metabolism. J Lipid Res. 1994;35(10):1809–19.

    CAS  PubMed  Google Scholar 

  49. Raper A, Kolansky DM, Sachais BS, Meagher EA, Baer AL, Cuchel M. Long-term clinical results of microsomal triglyceride transfer protein inhibitor use in a patient with homozygous familial hypercholesterolemia. J Clin Lipidol. 2015;9(1):107–12. doi:10.1016/j.jacl.2014.08.005.

    Article  PubMed  Google Scholar 

  50. Perry CM. Lomitapide: a review of its use in adults with homozygous familial hypercholesterolemia. Am J Cardiovasc Drugs. 2013;13(4):285–96. doi:10.1007/s40256-013-0030-7.

    Article  CAS  PubMed  Google Scholar 

  51. Brahm AJ, Hegele RA. Lomitapide for the treatment of hypertriglyceridemia. Expert Opin Invest Drugs. 2016;25(12):1457–63. doi:10.1080/13543784.2016.1254187.

    Article  CAS  Google Scholar 

  52. Temel RE, Tang W, Ma Y, Rudel LL, Willingham MC, Ioannou YA, et al. Hepatic Niemann–Pick C1-like 1 regulates biliary cholesterol concentration and is a target of ezetimibe. J Clin Invest. 2007;117(7):1968–78. doi:10.1172/jci30060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Xunde Xian of the Department of Molecular Genetics, UT Southwestern Medical Center at Dallas, TX, for advice and suggestions on the manuscript.

Author contributions

George Liu designed the study and revised the manuscript, Xin Liu and Peng Men extracted the data, Yuhui Wang and Suodi Zhai evaluated the studies quality, Suodi Zhai and Zhigang Zhao verified the data. Xin Liu and Peng Men collected the data and composed the manuscript. George Liu and Zhigang Zhao contributed to interpretation of the results, reviewing the draft, and finalizing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhigang Zhao or George Liu.

Ethics declarations

Conflict of interest

Xin Liu, Peng Men, Yuhui Wang, Suodi Zhai, Zhigang Zhao, and George Liu have no conflicts of interest that might be relevant to the contents of this manuscript.

Funding

This work was supported by Grants from the National Natural Science Foundation of the People’s Republic of China to G. Liu (No. 81470555) and Y. Wang (No. 81570787).

Additional information

Registration number in PROSPERO: CRD42016037302.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 53 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Men, P., Wang, Y. et al. Efficacy and Safety of Lomitapide in Hypercholesterolemia. Am J Cardiovasc Drugs 17, 299–309 (2017). https://doi.org/10.1007/s40256-017-0214-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40256-017-0214-7

Keywords

Navigation