Skip to main content
Log in

Gastrointestinal Dysfunction in Parkinson’s Disease

  • Review Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

There has been exponential growth in the awareness and understanding of gastrointestinal (GI) dysfunction in Parkinson’s disease (PD) over the past 3 decades. The clinical features of GI dysfunction in PD have been clearly identified and innovative research has demonstrated the presence of pathology within the enteric nervous system (ENS) in individuals with PD, leading to suggestions that the GI system may be ground zero for the genesis and the portal of entry of PD pathology, which then ascends via the vagus nerve to the central nervous system (CNS). This theory, as well as the more recent recognition of the association of PD with dysbiosis within the gut microbiota, has been the object of intense study and scrutiny. Since most PD medications are absorbed through the GI system, the need for better understanding of changes within the GI tract that may potentially affect the pattern of response to medications has become evident. In this review, current knowledge of the pathophysiology of changes within the GI tract and the gut microbiome of individuals with PD, including changes that occur with progression of the disease, will be addressed. We focus on common clinical GI problems in PD that can arise from different segments of the GI tract. Relevant diagnostic evaluations and treatment options for each of these problems will be reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Braak H, Rüb U, Gai WP, Del Tredici K. Idiopathic Parkinson’s disease: possible routes by which vulnerable neuronal types may be subject to neuroinvasion by an unknown pathogen. J Neural Transm (Vienna). 2003;110(5):517–36. https://doi.org/10.1007/s00702-002-0808-2.

    Article  CAS  Google Scholar 

  2. Fereshtehnejad SM, Yao C, Pelletier A, Montplaisir JY, Gagnon JF, Postuma RB. Evolution of prodromal Parkinson’s disease and dementia with Lewy bodies: a prospective study. Brain. 2019;142(7):2051–67. https://doi.org/10.1093/brain/awz111.

    Article  PubMed  Google Scholar 

  3. Stokholm MG, Danielsen EH, Hamilton-Dutoit SJ, Borghammer P. Pathological α-synuclein in gastrointestinal tissues from prodromal Parkinson disease patients. Ann Neurol. 2016;79(6):940–9. https://doi.org/10.1002/ana.24648.

    Article  CAS  PubMed  Google Scholar 

  4. Liu B, Fang F, Pedersen NL, Tillander A, Ludvigsson JF, Ekbom A, et al. Vagotomy and Parkinson disease: a Swedish register-based matched-cohort study. Neurology. 2017;88(21):1996–2002. https://doi.org/10.1212/wnl.0000000000003961.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Quigley EMM. Microbiota-Brain-Gut Axis and Neurodegenerative Diseases. Curr Neurol Neurosci Rep. 2017;17(12):94. https://doi.org/10.1007/s11910-017-0802-6.

    Article  CAS  PubMed  Google Scholar 

  6. Jost WH. Gastrointestinal dysfunction in Parkinson’s Disease. J Neurol Sci. 2010;289(1–2):69–73. https://doi.org/10.1016/j.jns.2009.08.020.

    Article  CAS  PubMed  Google Scholar 

  7. Troche MS, Okun MS, Rosenbek JC, Musson N, Fernandez HH, Rodriguez R, et al. Aspiration and swallowing in Parkinson disease and rehabilitation with EMST: a randomized trial. Neurology. 2010;75(21):1912–9. https://doi.org/10.1212/WNL.0b013e3181fef115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kupsky WJ, Grimes MM, Sweeting J, Bertsch R, Cote LJ. Parkinson’s disease and megacolon: concentric hyaline inclusions (Lewy bodies) in enteric ganglion cells. Neurology. 1987;37(7):1253–5. https://doi.org/10.1212/wnl.37.7.1253.

    Article  CAS  PubMed  Google Scholar 

  9. Chen Z, Li G, Liu J. Autonomic dysfunction in Parkinson’s disease: implications for pathophysiology, diagnosis, and treatment. Neurobiol Dis. 2020;134: 104700. https://doi.org/10.1016/j.nbd.2019.104700.

    Article  PubMed  Google Scholar 

  10. Yang T, Zhan Z, Zhang L, Zhu J, Liu Y, Zhang L, et al. Prevalence and risk factors for malnutrition in patients with Parkinson’s disease. Front Neurol. 2020;11: 533731. https://doi.org/10.3389/fneur.2020.533731.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Jost WH. Gastrointestinal motility problems in patients with Parkinson’s disease. Effects of antiparkinsonian treatment and guidelines for management. Drugs Aging. 1997;10(4):249–58. https://doi.org/10.2165/00002512-199710040-00002.

    Article  CAS  PubMed  Google Scholar 

  12. Ma K, Xiong N, Shen Y, Han C, Liu L, Zhang G. Weight loss and malnutrition in patients with parkinson’s disease: current knowledge and future prospects. Front Aging Neurosci. 2018;10:1. https://doi.org/10.3389/fnagi.2018.00001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Braak H, de Vos RA, Bohl J, Del Tredici K. Gastric alpha-synuclein immunoreactive inclusions in Meissner’s and Auerbach’s plexuses in cases staged for Parkinson’s disease-related brain pathology. Neurosci Lett. 2006;396(1):67–72. https://doi.org/10.1016/j.neulet.2005.11.012.

    Article  CAS  PubMed  Google Scholar 

  14. Cersosimo MG, Benarroch EE. Autonomic involvement in Parkinson’s disease: pathology, pathophysiology, clinical features and possible peripheral biomarkers. J Neurol Sci. 2012;313(1–2):57–63. https://doi.org/10.1016/j.jns.2011.09.030.

    Article  CAS  PubMed  Google Scholar 

  15. Lebouvier T, Chaumette T, Paillusson S, Duyckaerts C, Bruley-des-Varannes S, Neunlist M, et al. The second brain and Parkinson’s disease. Eur J Neurosci. 2009;30(5):735–41. https://doi.org/10.1111/j.1460-9568.2009.06873.x.

    Article  PubMed  Google Scholar 

  16. Cersosimo MG, Benarroch EE. Neural control of the gastrointestinal tract: implications for Parkinson disease. Mov Disord. 2008;23(8):1065–75. https://doi.org/10.1002/mds.22051.

    Article  PubMed  Google Scholar 

  17. Den-Hartog-Jager WA, Bethlem J. The distribution of Lewy bodies in the central and autonomic nervous systems in idiopathic paralysis agitans. J Neurol Neurosurg Psychiatry. 2019;196023(4):283–90. https://doi.org/10.1136/jnnp.23.4.283.

    Article  Google Scholar 

  18. Wakabayashi K, Takahashi H, Takeda S, Ohama E, Ikuta F. Parkinson’s disease: the presence of Lewy bodies in Auerbach’s and Meissner’s plexuses. Acta Neuropathol. 1988;76(3):217–21. https://doi.org/10.1007/bf00687767.

    Article  CAS  PubMed  Google Scholar 

  19. Qualman SJ, Haupt HM, Yang P, Hamilton SR. Esophageal Lewy bodies associated with ganglion cell loss in achalasia. Similarity to Parkinson’s disease. Gastroenterology. 1984;87(4):848–56.

    Article  CAS  PubMed  Google Scholar 

  20. Wakabayashi K, Takahashi H, Takeda S, Ohama E, Ikuta F. Lewy bodies in the enteric nervous system in Parkinson’s disease. Arch Histol Cytol. 1989;52(Suppl):191–4. https://doi.org/10.1679/aohc.52.suppl_191.

    Article  PubMed  Google Scholar 

  21. Braak H, Del Tredici K, Rüb U, de Vos RA, Jansen Steur EN, Braak E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging. 2003;24(2):197–211. https://doi.org/10.1016/s0197-4580(02)00065-9.

    Article  PubMed  Google Scholar 

  22. Hawkes CH, Del Tredici K, Braak H. Parkinson’s disease: a dual-hit hypothesis. Neuropathol Appl Neurobiol. 2007;33(6):599–614. https://doi.org/10.1111/j.1365-2990.2007.00874.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hilton D, Stephens M, Kirk L, Edwards P, Potter R, Zajicek J, et al. Accumulation of α-synuclein in the bowel of patients in the pre-clinical phase of Parkinson’s disease. Acta Neuropathol. 2014;127(2):235–41. https://doi.org/10.1007/s00401-013-1214-6.

    Article  CAS  PubMed  Google Scholar 

  24. Shannon KM, Keshavarzian A, Dodiya HB, Jakate S, Kordower JH. Is alpha-synuclein in the colon a biomarker for premotor Parkinson’s disease? Evidence from 3 cases. Mov Disord. 2012;27(6):716–9. https://doi.org/10.1002/mds.25020.

    Article  PubMed  Google Scholar 

  25. Visanji NP, Marras C, Hazrati LN, Liu LW, Lang AE. Alimentary, my dear Watson? The challenges of enteric α-synuclein as a Parkinson’s disease biomarker. Mov Disord. 2014;29(4):444–50. https://doi.org/10.1002/mds.25789.

    Article  PubMed  Google Scholar 

  26. Svensson E, Horváth-Puhó E, Thomsen RW, Djurhuus JC, Pedersen L, Borghammer P, et al. Vagotomy and subsequent risk of Parkinson’s disease. Ann Neurol. 2015;78(4):522–9. https://doi.org/10.1002/ana.24448.

    Article  PubMed  Google Scholar 

  27. Steiner JA, Quansah E, Brundin P. The concept of alpha-synuclein as a prion-like protein: ten years after. Cell Tissue Res. 2018;373(1):161–73. https://doi.org/10.1007/s00441-018-2814-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Breid S, Bernis ME, Babila JT, Garza MC, Wille H, Tamgüney G. Neuroinvasion of α-synuclein prionoids after intraperitoneal and intraglossal inoculation. J Virol. 2016;90(20):9182–93. https://doi.org/10.1128/jvi.01399-16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ayers JI, Brooks MM, Rutherford NJ, Howard JK, Sorrentino ZA, Riffe CJ, et al. Robust central nervous system pathology in transgenic mice following peripheral injection of α-synuclein fibrils. J Virol. 2017;91(2):e02095-e2116. https://doi.org/10.1128/jvi.02095-16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Adler CH, Beach TG. Neuropathological basis of nonmotor manifestations of Parkinson’s disease. Mov Disord. 2016;31(8):1114–9. https://doi.org/10.1002/mds.26605.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Borghammer P, Van Den Berge N. Brain-first versus gut-first parkinson’s disease: a hypothesis. J Parkinsons Dis. 2019;9(Suppl 2):S281–95. https://doi.org/10.3233/jpd-191721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Shannon K, Vanden BP. The enteric nervous system in PD: gateway, bystander victim, or source of solutions. Cell Tissue Res. 2018;373(1):313–26. https://doi.org/10.1007/s00441-018-2856-4.

    Article  CAS  PubMed  Google Scholar 

  33. Beach TG, Adler CH, Lue L, Sue LI, Bachalakuri J, Henry-Watson J, et al. Unified staging system for Lewy body disorders: correlation with nigrostriatal degeneration, cognitive impairment and motor dysfunction. Acta Neuropathol. 2009;117(6):613–34. https://doi.org/10.1007/s00401-009-0538-8.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Bauckneht M, Chincarini A, De Carli F, Terzaghi M, Morbelli S, Nobili F, et al. Presynaptic dopaminergic neuroimaging in REM sleep behavior disorder: a systematic review and meta-analysis. Sleep Med Rev. 2018;41:266–74. https://doi.org/10.1016/j.smrv.2018.04.001.

    Article  PubMed  Google Scholar 

  35. Kashihara K, Imamura T, Shinya T. Cardiac 123I-MIBG uptake is reduced more markedly in patients with REM sleep behavior disorder than in those with early stage Parkinson’s disease. Parkinson Relat Disord. 2010;16(4):252–5. https://doi.org/10.1016/j.parkreldis.2009.12.010.

    Article  Google Scholar 

  36. Nagayama H, Hamamoto M, Ueda M, Nagashima J, Katayama Y. Reliability of MIBG myocardial scintigraphy in the diagnosis of Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2005;76(2):249–51. https://doi.org/10.1136/jnnp.2004.037028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Marras C, Chaudhuri KR. Nonmotor features of Parkinson’s disease subtypes. Mov Disord. 2016;31(8):1095–102. https://doi.org/10.1002/mds.26510.

    Article  CAS  PubMed  Google Scholar 

  38. Thursby E, Juge N. Introduction to the human gut microbiota. Biochem J. 2017;474(11):1823–36. https://doi.org/10.1042/bcj20160510.

    Article  CAS  PubMed  Google Scholar 

  39. Sender R, Fuchs S, Milo R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol. 2016;14(8): e1002533. https://doi.org/10.1371/journal.pbio.1002533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Nuzum ND, Loughman A, Szymlek-Gay EA, Hendy A, Teo WP, Macpherson H. Gut microbiota differences between healthy older adults and individuals with Parkinson’s disease: a systematic review. Neurosci Biobehav Rev. 2020;112:227–41. https://doi.org/10.1016/j.neubiorev.2020.02.003.

    Article  PubMed  Google Scholar 

  41. Yemula N, Dietrich C, Dostal V, Hornberger M. Parkinson’s disease and the gut: symptoms, nutrition, and microbiota. J Parkinsons Dis. 2021;11(4):1491–505. https://doi.org/10.3233/jpd-212707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Baizabal-Carvallo JF, Alonso-Juarez M. The link between gut dysbiosis and neuroinflammation in parkinson’s disease. Neuroscience. 2020;432:160–73. https://doi.org/10.1016/j.neuroscience.2020.02.030.

    Article  CAS  PubMed  Google Scholar 

  43. Becker A, Faßbender K, Oertel WH, Unger MM. A punch in the gut - Intestinal inflammation links environmental factors to neurodegeneration in Parkinson’s disease. Parkinson Relat Disord. 2019;60:43–5. https://doi.org/10.1016/j.parkreldis.2018.09.032.

    Article  Google Scholar 

  44. Clairembault T, Leclair-Visonneau L, Coron E, Bourreille A, Le Dily S, Vavasseur F, et al. Structural alterations of the intestinal epithelial barrier in Parkinson’s disease. Acta Neuropathol Commun. 2015;3:12. https://doi.org/10.1186/s40478-015-0196-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Forsyth CB, Shannon KM, Kordower JH, Voigt RM, Shaikh M, Jaglin JA, et al. Increased intestinal permeability correlates with sigmoid mucosa alpha-synuclein staining and endotoxin exposure markers in early Parkinson’s disease. PLoS ONE. 2011;6(12): e28032. https://doi.org/10.1371/journal.pone.0028032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Qian Y, Yang X, Xu S, Wu C, Song Y, Qin N, et al. Alteration of the fecal microbiota in Chinese patients with Parkinson’s disease. Brain Behav Immun. 2018;70:194–202. https://doi.org/10.1016/j.bbi.2018.02.016.

    Article  PubMed  Google Scholar 

  47. Jin M, Li J, Liu F, Lyu N, Wang K, Wang L, Liang S, et al. Analysis of the gut microflora in patients with Parkinson’s disease. Front Neurosci. 2019;13:1184. https://doi.org/10.3389/fnins.2019.01184.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Pietrucci D, Cerroni R, Unida V, Farcomeni A, Pierantozzi M, Mercuri NB, et al. Dysbiosis of gut microbiota in a selected population of Parkinson’s patients. Parkinson Relat Disord. 2019;65:124–30. https://doi.org/10.1016/j.parkreldis.2019.06.003.

    Article  Google Scholar 

  49. Nishiwaki H, Ito M, Ishida T, Hamaguchi T, Maeda T, Kashihara K, et al. Meta-analysis of gut dysbiosis in Parkinson’s disease. Mov Disord. 2020;35(9):1626–35. https://doi.org/10.1002/mds.28119.

    Article  CAS  PubMed  Google Scholar 

  50. Romano S, Savva GM, Bedarf JR, Charles IG, Hildebrand F, Narbad A. Meta-analysis of the Parkinson’s disease gut microbiome suggests alterations linked to intestinal inflammation. NPJ Parkinsons Dis. 2021;7(1):27. https://doi.org/10.1038/s41531-021-00156-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Shi Z, Qiu Y, Wang J, Fang Y, Zhang Y, Chen H, et al. Dysbiosis of gut microbiota in patients with neuromyelitis optica spectrum disorders: a cross sectional study. J Neuroimmunol. 2020;339: 577126. https://doi.org/10.1016/j.jneuroim.2019.577126.

    Article  CAS  PubMed  Google Scholar 

  52. Freedman SN, Shahi SK, Mangalam AK. The “gut feeling”: breaking down the role of gut microbiome in multiple sclerosis. Neurotherapeutics. 2018;15(1):109–25. https://doi.org/10.1007/s13311-017-0588-x.

    Article  PubMed  Google Scholar 

  53. Sampson TR, Debelius JW, Thron T, Janssen S, Shastri GG, Ilhan ZE, et al. Gut microbiota regulate motor deficits and neuroinflammation in a model of parkinson’s disease. Cell. 2016;167(6):1469-1480.e12. https://doi.org/10.1016/j.cell.2016.11.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Walter J, Armet AM, Finlay BB, Shanahan F. Establishing or exaggerating causality for the gut microbiome: lessons from human microbiota-associated rodents. Cell. 2020;180(2):221–32. https://doi.org/10.1016/j.cell.2019.12.025.

    Article  CAS  PubMed  Google Scholar 

  55. Unger MM, Spiegel J, Dillmann KU, Grundmann D, Philippeit H, Bürmann J, et al. Short chain fatty acids and gut microbiota differ between patients with Parkinson’s disease and age-matched controls. Parkinson Relat Disord. 2016;32:66–72. https://doi.org/10.1016/j.parkreldis.2016.08.019.

    Article  Google Scholar 

  56. Lionnet A, Leclair-Visonneau L, Neunlist M, Murayama S, Takao M, Adler CH, et al. Does Parkinson’s disease start in the gut? Acta Neuropathol. 2018;135(1):1–12. https://doi.org/10.1007/s00401-017-1777-8.

    Article  PubMed  Google Scholar 

  57. van Kessel SP, El Aidy S. Contributions of gut bacteria and diet to drug pharmacokinetics in the treatment of parkinson’s disease. Front Neurol. 2019;10:1087. https://doi.org/10.3389/fneur.2019.01087.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Zhang X, Han Y, Huang W, Jin M, Gao Z. The influence of the gut microbiota on the bioavailability of oral drugs. Acta Pharm Sin B. 2021;11(7):1789–812. https://doi.org/10.1016/j.apsb.2020.09.013.

    Article  CAS  PubMed  Google Scholar 

  59. van Kessel SP, Frye AK, El-Gendy AO, Castejon M, Keshavarzian A, van Dijk G, et al. Gut bacterial tyrosine decarboxylases restrict levels of levodopa in the treatment of Parkinson’s disease. Nat Commun. 2019;10(1):310. https://doi.org/10.1038/s41467-019-08294-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Weersma RK, Zhernakova A, Fu J. Interaction between drugs and the gut microbiome. Gut. 2020;69(8):1510–9. https://doi.org/10.1136/gutjnl-2019-320204.

    Article  CAS  PubMed  Google Scholar 

  61. Vich Vila A, Collij V, Sanna S, Sinha T, Imhann F, Bourgonje AR, et al. Impact of commonly used drugs on the composition and metabolic function of the gut microbiota. Nat Commun. 2020;11(1):362. https://doi.org/10.1038/s41467-019-14177-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Leta V, Ray Chaudhuri K, Milner O, Chung-Faye G, Metta V, Pariante CM, et al. Neurogenic and anti-inflammatory effects of probiotics in Parkinson’s disease: a systematic review of preclinical and clinical evidence. Brain Behav Immun. 2021;98:59–73. https://doi.org/10.1016/j.bbi.2021.07.026.

    Article  CAS  PubMed  Google Scholar 

  63. Brown EG, Goldman SM. Modulation of the microbiome in parkinson’s disease: diet, drug, stool transplant, and beyond. Neurotherapeutics. 2020;17(4):1406–17. https://doi.org/10.1007/s13311-020-00942-2.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Xue LJ, Yang XZ, Tong Q, Shen P, Ma SJ, Wu SN, Zheng JL, Wang HG. Fecal microbiota transplantation therapy for Parkinson’s disease: a preliminary study. Med (Baltim). 2020;99(35): e22035. https://doi.org/10.1097/md.0000000000022035.

    Article  Google Scholar 

  65. Ahlskog JE, Muenter MD. Frequency of levodopa-related dyskinesias and motor fluctuations as estimated from the cumulative literature. Mov Disord. 2001;16(3):448–58. https://doi.org/10.1002/mds.1090.

    Article  CAS  PubMed  Google Scholar 

  66. Schrag A, Quinn N. Dyskinesias and motor fluctuations in Parkinson’s disease. A community-based study. Brain. 2000;123(Pt 11):2297–305. https://doi.org/10.1093/brain/123.11.2297.

    Article  PubMed  Google Scholar 

  67. Cilia R, Cereda E, Akpalu A, Sarfo FS, Cham M, Laryea R, et al. Natural history of motor symptoms in Parkinson’s disease and the long-duration response to levodopa. Brain. 2020;143(8):2490–501. https://doi.org/10.1093/brain/awaa181.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Storch A, Schneider CB, Wolz M, Stürwald Y, Nebe A, Odin P, et al. Nonmotor fluctuations in Parkinson disease: severity and correlation with motor complications. Neurology. 2013;80(9):800–9. https://doi.org/10.1212/WNL.0b013e318285c0ed.

    Article  PubMed  Google Scholar 

  69. Pfeiffer RF. Non-motor symptoms in Parkinson’s disease. Parkinsonism Relat Disord. 2016;22(Suppl 1):S119–22. https://doi.org/10.1016/j.parkreldis.2015.09.004.

    Article  PubMed  Google Scholar 

  70. Witjas T, Kaphan E, Azulay JP, Blin O, Ceccaldi M, Pouget J, et al. Nonmotor fluctuations in Parkinson’s disease: frequent and disabling. Neurology. 2002;59(3):408–13. https://doi.org/10.1212/wnl.59.3.408.

    Article  PubMed  Google Scholar 

  71. Chaudhuri KR, Rizos A, Sethi KD. Motor and nonmotor complications in Parkinson’s disease: an argument for continuous drug delivery? J Neural Transm (Vienna). 2013;120(9):1305–20. https://doi.org/10.1007/s00702-013-0981-5.

    Article  CAS  Google Scholar 

  72. Espay AJ, Morgante F, Merola A, Fasano A, Marsili L, Fox SH, et al. Levodopa-induced dyskinesia in Parkinson disease: current and evolving concepts. Ann Neurol. 2018;84(6):797–811. https://doi.org/10.1002/ana.25364.

    Article  PubMed  Google Scholar 

  73. Hauser RA, McDermott MP, Messing S. Factors associated with the development of motor fluctuations and dyskinesias in Parkinson disease. Arch Neurol. 2006;63(12):1756–60. https://doi.org/10.1001/archneur.63.12.1756.

    Article  PubMed  Google Scholar 

  74. Bjornestad A, Forsaa EB, Pedersen KF, Tysnes OB, Larsen JP, Alves G. Risk and course of motor complications in a population-based incident Parkinson’s disease cohort. Parkinsonism Relat Disord. 2016;22:48–53. https://doi.org/10.1016/j.parkreldis.2015.11.007.

    Article  PubMed  Google Scholar 

  75. Pfeiffer RF. Gastrointestinal Dysfunction in Parkinson’s Disease. Curr Treat Options Neurol. 2018;20(12):54. https://doi.org/10.1007/s11940-018-0539-9.

    Article  PubMed  Google Scholar 

  76. Nyholm D, Lennernäs H. Irregular gastrointestinal drug absorption in Parkinson’s disease. Expert Opin Drug Metab Toxicol. 2008;4(2):193–203. https://doi.org/10.1517/17425255.4.2.193.

    Article  CAS  PubMed  Google Scholar 

  77. Heetun ZS, Quigley EM. Gastroparesis and Parkinson’s disease: a systematic review. Parkinsonism Relat Disord. 2012;18(5):433–40. https://doi.org/10.1016/j.parkreldis.2011.12.004.

    Article  PubMed  Google Scholar 

  78. Fashner J, Gitu AC. Diagnosis and treatment of peptic ulcer disease and H. pylori infection. Am Fam Phys. 2015;91(4):236–42.

    Google Scholar 

  79. Ricci C, Holton J, Vaira D. Diagnosis of Helicobacter pylori: invasive and non-invasive tests. Best Pract Res Clin Gastroenterol. 2007;21(2):299–313. https://doi.org/10.1016/j.bpg.2006.11.002.

    Article  PubMed  Google Scholar 

  80. Kamboj AK, Cotter TG, Oxentenko AS. Helicobacter pylori: the past, present, and future in management. Mayo Clin Proc. 2017;92(4):599–604. https://doi.org/10.1016/j.mayocp.2016.11.017.

    Article  PubMed  Google Scholar 

  81. Schwab RS. Symptomatology and medical treatment of Parkinson’s disease. Int J Neurol. 1961;2:61–75.

    CAS  PubMed  Google Scholar 

  82. Shen X, Yang H, Wu Y, Zhang D, Jiang H. Meta-analysis: association of Helicobacter pylori infection with Parkinson’s diseases. Helicobacter. 2017;22:5. https://doi.org/10.1111/hel.12398.

    Article  Google Scholar 

  83. Tan AH, Mahadeva S, Marras C, Thalha AM, Kiew CK, Yeat CM, et al. Helicobacter pylori infection is associated with worse severity of Parkinson’s disease. Parkinsonism Relat Disord. 2015;21(3):221–5. https://doi.org/10.1016/j.parkreldis.2014.12.009.

    Article  PubMed  Google Scholar 

  84. Rahne KE, Tagesson C, Nyholm D. Motor fluctuations and Helicobacter pylori in Parkinson’s disease. J Neurol. 2013;260(12):2974–80. https://doi.org/10.1007/s00415-013-7089-6.

    Article  PubMed  Google Scholar 

  85. Bjarnason IT, Charlett A, Dobbs RJ, Dobbs SM, Ibrahim MA, Kerwin RW, et al. Role of chronic infection and inflammation in the gastrointestinal tract in the etiology and pathogenesis of idiopathic parkinsonism. Part 2: response of facets of clinical idiopathic parkinsonism to Helicobacter pylori eradication. A randomized, double-blind, placebo-controlled efficacy study. Helicobacter. 2005;10(4):276–87. https://doi.org/10.1111/j.1523-5378.2005.00330.x.

    Article  CAS  PubMed  Google Scholar 

  86. Nielsen HH, Qiu J, Friis S, Wermuth L, Ritz B. Treatment for Helicobacter pylori infection and risk of Parkinson’s disease in Denmark. Eur J Neurol. 2012;19(6):864–9. https://doi.org/10.1111/j.1468-1331.2011.03643.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Deretzi G, Kountouras J, Polyzos SA, Zavos C, Giartza-Taxidou E, Gavalas E, et al. Gastrointestinal immune system and brain dialogue implicated in neuroinflammatory and neurodegenerative diseases. Curr Mol Med. 2011;11(8):696–707. https://doi.org/10.2174/156652411797536660.

    Article  CAS  PubMed  Google Scholar 

  88. Fiorentino M, Ding H, Blanchard TG, Czinn SJ, Sztein MB, Fasano A. Helicobacter pylori-induced disruption of monolayer permeability and proinflammatory cytokine secretion in polarized human gastric epithelial cells. Infect Immun. 2013;81(3):876–83. https://doi.org/10.1128/iai.01406-12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Lee WY, Yoon WT, Shin HY, Jeon SH, Rhee PL. Helicobacter pylori infection and motor fluctuations in patients with Parkinson’s disease. Mov Disord. 2008;23(12):1696–700. https://doi.org/10.1002/mds.22190.

    Article  PubMed  Google Scholar 

  90. Hashim H, Azmin S, Razlan H, Yahya NW, Tan HJ, Manaf MR, et al. Eradication of Helicobacter pylori infection improves levodopa action, clinical symptoms and quality of life in patients with Parkinson’s disease. PLoS ONE. 2014;9(11): e112330. https://doi.org/10.1371/journal.pone.0112330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Pierantozzi M, Pietroiusti A, Brusa L, Galati S, Stefani A, Lunardi G, et al. Helicobacter pylori eradication and l-dopa absorption in patients with PD and motor fluctuations. Neurology. 2006;66(12):1824–9. https://doi.org/10.1212/01.wnl.0000221672.01272.ba.

    Article  CAS  PubMed  Google Scholar 

  92. Tan AH, Lim SY, Mahadeva S, Loke MF, Tan JY, Ang BH, et al. Helicobacter pylori eradication in Parkinson’s disease: a randomized placebo-controlled trial. Mov Disord. 2020;35(12):2250–60. https://doi.org/10.1002/mds.28248.

    Article  CAS  PubMed  Google Scholar 

  93. Goetz CG, Wuu J, McDermott MP, Adler CH, Fahn S, Freed CR, et al. Placebo response in Parkinson’s disease: comparisons among 11 trials covering medical and surgical interventions. Mov Disord. 2008;23(5):690–9. https://doi.org/10.1002/mds.21894.

    Article  PubMed  Google Scholar 

  94. Mestre TA, Lang AE. Placebos in clinical trials: unravelling a complex phenomenon. Lancet Neurol. 2017;16(1):28–9. https://doi.org/10.1016/s1474-4422(16)30349-0.

    Article  PubMed  Google Scholar 

  95. Gasbarrini A, Lauritano EC, Gabrielli M, Scarpellini E, Lupascu A, Ojetti V, et al. Small intestinal bacterial overgrowth: diagnosis and treatment. Dig Dis. 2007;25(3):237–40. https://doi.org/10.1159/000103892.

    Article  PubMed  Google Scholar 

  96. Donaldson RM. Normal bacterial populations of the intestine and their relation to intestinal function. N Engl J Med. 1964;270:938–45. https://doi.org/10.1056/nejm196404302701806.

    Article  PubMed  Google Scholar 

  97. Baker J, Eswaran S, Saad R, Menees S, Shifferd J, Erickson K, et al. Abdominal symptoms are common and benefit from biofeedback therapy in patients with dyssynergic defecation. Clin Transl Gastroenterol. 2015;6(7): e105. https://doi.org/10.1038/ctg.2015.30.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Pimentel M, Saad RJ, Long MD, Rao SSC. ACG clinical guideline: small intestinal bacterial overgrowth. Am J Gastroenterol. 2020;115(2):165–78. https://doi.org/10.14309/ajg.0000000000000501.

    Article  PubMed  Google Scholar 

  99. Erdogan A, Rao SS, Gulley D, Jacobs C, Lee YY, Badger C. Small intestinal bacterial overgrowth: duodenal aspiration vs glucose breath test. Neurogastroenterol Motil. 2015;27(4):481–9. https://doi.org/10.1111/nmo.12516.

    Article  CAS  PubMed  Google Scholar 

  100. Jacobs C, Coss Adame E, Attaluri A, Valestin J, Rao SS. Dysmotility and proton pump inhibitor use are independent risk factors for small intestinal bacterial and/or fungal overgrowth. Aliment Pharmacol Ther. 2013;37(11):1103–11. https://doi.org/10.1111/apt.12304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Singh S, Allan N, Wahl C. Development of a swallowable diganostic capsule to monitor gastrointestinal health. Gastroenterology. 2019;156:S-376.

    Article  Google Scholar 

  102. Kalantar-Zadeh K, Berean KJ, Ha N, et al. A human pilot trial of ingestible electronic capsules capable of sensing different gases in the gut. Nat Electronics. 2018;1:79–87.

    Article  Google Scholar 

  103. Gabrielli M, Bonazzi P, Scarpellini E, Bendia E, Lauritano EC, Fasano A, et al. Prevalence of small intestinal bacterial overgrowth in Parkinson’s disease. Mov Disord. 2011;26(5):889–92. https://doi.org/10.1002/mds.23566.

    Article  PubMed  Google Scholar 

  104. Fasano A, Bove F, Gabrielli M, Petracca M, Zocco MA, Ragazzoni E, et al. The role of small intestinal bacterial overgrowth in Parkinson’s disease. Mov Disord. 2013;28(9):1241–9. https://doi.org/10.1002/mds.25522.

    Article  CAS  PubMed  Google Scholar 

  105. Tan AH, Mahadeva S, Thalha AM, Gibson PR, Kiew CK, Yeat CM, et al. Small intestinal bacterial overgrowth in Parkinson’s disease. Parkinsonism Relat Disord. 2014;20(5):535–40. https://doi.org/10.1016/j.parkreldis.2014.02.019.

    Article  PubMed  Google Scholar 

  106. Niu XL, Liu L, Song ZX, Li Q, Wang ZH, Zhang JL, et al. Prevalence of small intestinal bacterial overgrowth in Chinese patients with Parkinson’s disease. J Neural Transm (Vienna). 2016;123(12):1381–6. https://doi.org/10.1007/s00702-016-1612-8.

    Article  CAS  Google Scholar 

  107. Wanitschke R, Ammon HV. Effects of dihydroxy bile acids and hydroxy fatty acids on the absorption of oleic acid in the human jejunum. J Clin Invest. 1978;61(1):178–86. https://doi.org/10.1172/jci108916.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Nucera G, Gabrielli M, Lupascu A, Lauritano EC, Santoliquido A, Cremonini F, et al. Abnormal breath tests to lactose, fructose and sorbitol in irritable bowel syndrome may be explained by small intestinal bacterial overgrowth. Aliment Pharmacol Ther. 2005;21(11):1391–5. https://doi.org/10.1111/j.1365-2036.2005.02493.x.

    Article  CAS  PubMed  Google Scholar 

  109. Lomax AE, Linden DR, Mawe GM, Sharkey KA. Effects of gastrointestinal inflammation on enteroendocrine cells and enteric neural reflex circuits. Auton Neurosci. 2006;126–127:250–7. https://doi.org/10.1016/j.autneu.2006.02.015.

    Article  CAS  PubMed  Google Scholar 

  110. Spencer RP. Intestinal absorption of amino acids. Current concepts. Am J Clin Nutr. 1969;22(3):292–9. https://doi.org/10.1093/ajcn/22.3.292.

    Article  CAS  PubMed  Google Scholar 

  111. Scarpellini E, Gabrielli M, Lauritano CE, Lupascu A, Merra G, Cammarota G, et al. High dosage rifaximin for the treatment of small intestinal bacterial overgrowth. Aliment Pharmacol Ther. 2007;25(7):781–6. https://doi.org/10.1111/j.1365-2036.2007.03259.x.

    Article  CAS  PubMed  Google Scholar 

  112. Vizcarra JA, Wilson-Perez HE, Fasano A, Espay AJ. Small intestinal bacterial overgrowth in Parkinson’s disease: tribulations of a trial. Parkinsonism Relat Disord. 2018;54:110–2. https://doi.org/10.1016/j.parkreldis.2018.04.003.

    Article  PubMed  Google Scholar 

  113. Quigley EMM, Murray JA, Pimentel M. AGA clinical practice update on small intestinal bacterial overgrowth: expert review. Gastroenterology. 2020;159(4):1526–32. https://doi.org/10.1053/j.gastro.2020.06.090.

    Article  CAS  PubMed  Google Scholar 

  114. Cersosimo MG, Benarroch EE. Pathological correlates of gastrointestinal dysfunction in Parkinson’s disease. Neurobiol Dis. 2012;46(3):559–64. https://doi.org/10.1016/j.nbd.2011.10.014.

    Article  PubMed  Google Scholar 

  115. Blandini F, Balestra B, Levandis G, Cervio M, Greco R, Tassorelli C, et al. Functional and neurochemical changes of the gastrointestinal tract in a rodent model of Parkinson’s disease. Neurosci Lett. 2009;467(3):203–7. https://doi.org/10.1016/j.neulet.2009.10.035.

    Article  CAS  PubMed  Google Scholar 

  116. Johnson ME, Stringer A, Bobrovskaya L. Rotenone induces gastrointestinal pathology and microbiota alterations in a rat model of Parkinson’s disease. Neurotoxicology. 2018;65:174–85. https://doi.org/10.1016/j.neuro.2018.02.013.

    Article  CAS  PubMed  Google Scholar 

  117. Heimrich KG, Jacob VYP, Schaller D, Stallmach A, Witte OW, Prell T. Gastric dysmotility in Parkinson’s disease is not caused by alterations of the gastric pacemaker cells. NPJ Parkinsons Dis. 2019;5:15. https://doi.org/10.1038/s41531-019-0087-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. van der Sijp JR, Kamm MA, Nightingale JM, Britton KE, Granowska M, Mather SJ, et al. Disturbed gastric and small bowel transit in severe idiopathic constipation. Dig Dis Sci. 1993;38(5):837–44. https://doi.org/10.1007/bf01295909.

    Article  PubMed  Google Scholar 

  119. Mollen RM, Hopman WP, Kuijpers HH, Jansen JB. Abnormalities of upper gut motility in patients with slow-transit constipation. Eur J Gastroenterol Hepatol. 1999;11(7):701–8. https://doi.org/10.1097/00042737-199907000-00003.

    Article  CAS  PubMed  Google Scholar 

  120. Hemingway DM, Finlay IG. Effect of colectomy on gastric emptying in idiopathic slow-transit constipation. Br J Surg. 2000;87(9):1193–6. https://doi.org/10.1046/j.1365-2168.2000.01505.x.

    Article  CAS  PubMed  Google Scholar 

  121. Quigley EM. Review article: gastric emptying in functional gastrointestinal disorders. Aliment Pharmacol Ther. 2004;20(Suppl 7):56–60. https://doi.org/10.1111/j.1365-2036.2004.02186.x.

    Article  PubMed  Google Scholar 

  122. Tanaka Y, Kato T, Nishida H, Yamada M, Koumura A, Sakurai T, et al. Is there a delayed gastric emptying of patients with early-stage, untreated Parkinson’s disease? An analysis using the 13C-acetate breath test. J Neurol. 2011;258(3):421–6. https://doi.org/10.1007/s00415-010-5769-z.

    Article  PubMed  Google Scholar 

  123. Goetze O, Nikodem AB, Wiezcorek J, Banasch M, Przuntek H, Mueller T, et al. Predictors of gastric emptying in Parkinson’s disease. Neurogastroenterol Motil. 2006;18(5):369–75. https://doi.org/10.1111/j.1365-2982.2006.00780.x.

    Article  CAS  PubMed  Google Scholar 

  124. Parkman HP, Hasler WL, Fisher RS. American Gastroenterological Association technical review on the diagnosis and treatment of gastroparesis. Gastroenterology. 2004;127(5):1592–622. https://doi.org/10.1053/j.gastro.2004.09.055.

    Article  PubMed  Google Scholar 

  125. Knudsen K, Szwebs M, Hansen AK, Borghammer P. Gastric emptying in Parkinson’s disease: a mini-review. Parkinsonism Relat Disord. 2018;55:18–25. https://doi.org/10.1016/j.parkreldis.2018.06.003.

    Article  PubMed  Google Scholar 

  126. Abell TL, Camilleri M, Donohoe K, Hasler WL, Lin HC, Maurer AH, et al. Consensus recommendations for gastric emptying scintigraphy: a joint report of the American Neurogastroenterology and Motility Society and the Society of Nuclear Medicine. Am J Gastroenterol. 2008;103(3):753–63. https://doi.org/10.1111/j.1572-0241.2007.01636.x.

    Article  PubMed  Google Scholar 

  127. Camilleri M, Hasler WL, Parkman HP, Quigley EM, Soffer E. Measurement of gastrointestinal motility in the GI laboratory. Gastroenterology. 1998;115(3):747–62. https://doi.org/10.1016/s0016-5085(98)70155-6.

    Article  CAS  PubMed  Google Scholar 

  128. Rao SS, Camilleri M, Hasler WL, Maurer AH, Parkman HP, Saad R, et al. Evaluation of gastrointestinal transit in clinical practice: position paper of the American and European Neurogastroenterology and Motility Societies. Neurogastroenterol Motil. 2011;23(1):8–23. https://doi.org/10.1111/j.1365-2982.2010.01612.x.

    Article  CAS  PubMed  Google Scholar 

  129. Lee JS, Camilleri M, Zinsmeister AR, Burton DD, Choi MG, Nair KS, et al. Toward office-based measurement of gastric emptying in symptomatic diabetics using [13C]octanoic acid breath test. Am J Gastroenterol. 2000;95(10):2751–61. https://doi.org/10.1111/j.1572-0241.2000.03183.x.

    Article  CAS  PubMed  Google Scholar 

  130. Keller J, Bassotti G, Clarke J, Dinning P, Fox M, Grover M, et al. Expert consensus document: advances in the diagnosis and classification of gastric and intestinal motility disorders. Nat Rev Gastroenterol Hepatol. 2018;15(5):291–308. https://doi.org/10.1038/nrgastro.2018.7.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Goetze O, Fox M, Kwiatek MA, Treier R, Schwizer W, Thumshirn M, et al. Effects of postgastric 13C-acetate processing on measurement of gastric emptying: a systematic investigation in health. Neurogastroenterol Motil. 2009;21(10):1047-e85. https://doi.org/10.1111/j.1365-2982.2009.01337.x.

    Article  CAS  PubMed  Google Scholar 

  132. Keller J, Andresen V, Wolter J, Layer P, Camilleri M. Influence of clinical parameters on the results of 13C-octanoic acid breath tests: examination of different mathematical models in a large patient cohort. Neurogastroenterol Motil. 2009;21(10):1039-e83. https://doi.org/10.1111/j.1365-2982.2009.01340.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. van de Casteele M, Luypaerts A, Geypens B, Fevery J, Ghoos Y, Nevens F. Oxidative breakdown of octanoic acid is maintained in patients with cirrhosis despite advanced disease. Neurogastroenterol Motil. 2003;15(2):113–20. https://doi.org/10.1046/j.1365-2982.2003.00397.x.

    Article  PubMed  Google Scholar 

  134. Chapman MJ, Besanko LK, Burgstad CM, Fraser RJ, Bellon M, O’Connor S, et al. Gastric emptying of a liquid nutrient meal in the critically ill: relationship between scintigraphic and carbon breath test measurement. Gut. 2011;60(10):1336–43. https://doi.org/10.1136/gut.2010.227934.

    Article  CAS  PubMed  Google Scholar 

  135. Szarka LA, Camilleri M, Vella A, Burton D, Baxter K, Simonson J, et al. A stable isotope breath test with a standard meal for abnormal gastric emptying of solids in the clinic and in research. Clin Gastroenterol Hepatol. 2008;6(6):635-643.e1. https://doi.org/10.1016/j.cgh.2008.01.009.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Maqbool S, Parkman HP, Friedenberg FK. Wireless capsule motility: comparison of the SmartPill GI monitoring system with scintigraphy for measuring whole gut transit. Dig Dis Sci. 2009;54(10):2167–74. https://doi.org/10.1007/s10620-009-0899-9.

    Article  PubMed  Google Scholar 

  137. Safarpour D, Brumbach B, Arena M, Quinn J, Nutt J, Pfeiffer R. Comparison of GI transit times in levodopa-responders and non-responders in patients with Parkinson’s disease. Mov Disorders Society. In: 25th Annual Meeting 2021. 2021.

  138. Mundt MW, Hausken T, Samsom M. Effect of intragastric barostat bag on proximal and distal gastric accommodation in response to liquid meal. Am J Physiol Gastrointest Liver Physiol. 2002;283(3):G681-6. https://doi.org/10.1152/ajpgi.00499.2001.

    Article  CAS  PubMed  Google Scholar 

  139. Wolpert N, Rebollo I, Tallon-Baudry C. Electrogastrography for psychophysiological research: practical considerations, analysis pipeline, and normative data in a large sample. Psychophysiology. 2020;57(9): e13599. https://doi.org/10.1111/psyp.13599.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Chen CL, Lin HH, Chen SY, Lin SZ. Utility of electrogastrography in differentiating Parkinson’s disease with or without gastrointestinal symptoms: a prospective controlled study. Digestion. 2005;71(3):187–91. https://doi.org/10.1159/000086143.

    Article  PubMed  Google Scholar 

  141. Naftali T, Gadoth N, Huberman M, Novis B. Electrogastrography in patients with Parkinson’s disease. Can J Neurol Sci. 2005;32(1):82–6. https://doi.org/10.1017/s0317167100016929.

    Article  CAS  PubMed  Google Scholar 

  142. Szarka LA, Camilleri M. Gastric emptying. Clin Gastroenterol Hepatol. 2009;7(8):823–7. https://doi.org/10.1016/j.cgh.2009.04.011.

    Article  PubMed  Google Scholar 

  143. Roland BC, Ciarleglio MM, Clarke JO, Semler JR, Tomakin E, Mullin GE, et al. Small intestinal transit time is delayed in small intestinal bacterial overgrowth. J Clin Gastroenterol. 2015;49(7):571–6. https://doi.org/10.1097/mcg.0000000000000257.

    Article  CAS  PubMed  Google Scholar 

  144. Read NW, Cammack J, Edwards C, Holgate AM, Cann PA, Brown C. Is the transit time of a meal through the small intestine related to the rate at which it leaves the stomach? Gut. 1982;23(10):824–8. https://doi.org/10.1136/gut.23.10.824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Grybäck P, Jacobsson H, Blomquist L, Schnell PO, Hellström PM. Scintigraphy of the small intestine: a simplified standard for study of transit with reference to normal values. Eur J Nucl Med Mol Imaging. 2002;29(1):39–45. https://doi.org/10.1007/s00259-001-0687-z.

    Article  CAS  PubMed  Google Scholar 

  146. Geypens B, Bennink R, Peeters M, Evenepoel P, Mortelmans L, Maes B, et al. Validation of the lactose-[13C]ureide breath test for determination of orocecal transit time by scintigraphy. J Nucl Med. 1999;40(9):1451–5.

    CAS  PubMed  Google Scholar 

  147. Tantiphlachiva K, Rao P, Attaluri A, Rao SS. Digital rectal examination is a useful tool for identifying patients with dyssynergia. Clin Gastroenterol Hepatol. 2010;8(11):955–60. https://doi.org/10.1016/j.cgh.2010.06.031.

    Article  PubMed  Google Scholar 

  148. Bharucha AE, Dorn SD, Lembo A, Pressman A. American Gastroenterological Association medical position statement on constipation. Gastroenterology. 2013;144(1):211–7. https://doi.org/10.1053/j.gastro.2012.10.029.

    Article  PubMed  Google Scholar 

  149. Asnicar F, Leeming ER, Dimidi E, Mazidi M, Franks PW, Al Khatib H, et al. Blue poo: impact of gut transit time on the gut microbiome using a novel marker. Gut. 2021;70(9):1665–74. https://doi.org/10.1136/gutjnl-2020-323877.

    Article  CAS  PubMed  Google Scholar 

  150. Zar MA, Ebong O, Bateman DN. Effect of metoclopramide in guinea-pig ileum longitudinal muscle: evidence against dopamine-mediation. Gut. 1982;23(1):66–70. https://doi.org/10.1136/gut.23.1.66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Görich R, Weihrauch TR, Kilbinger H. The inhibition by dopamine of cholinergic transmission in the isolated guinea-pig ileum. Mediation through alpha-adrenoceptors. Naunyn Schmiedebergs Arch Pharmacol. 1982;318(4):308–12. https://doi.org/10.1007/bf00501170.

    Article  PubMed  Google Scholar 

  152. Fullard ME, Duda JE. A review of the relationship between vitamin D and Parkinson disease symptoms. Front Neurol. 2020;11:454. https://doi.org/10.3389/fneur.2020.00454.

    Article  PubMed  PubMed Central  Google Scholar 

  153. Brown TM. Parkinsonism due to vitamin C deficiency. J Acad Consult Liaison Psychiatry. 2021;62(1):159–60. https://doi.org/10.1016/j.psym.2020.08.004.

    Article  PubMed  Google Scholar 

  154. Brown TM. Neuropsychiatric scurvy. Psychosomatics. 2015;56(1):12–20. https://doi.org/10.1016/j.psym.2014.05.010.

    Article  PubMed  Google Scholar 

  155. Boulos C, Yaghi N, El Hayeck R, Heraoui GN, Fakhoury-Sayegh N. Nutritional risk factors, microbiota and parkinson’s disease: what is the current evidence? Nutrients. 2019;11(8):1896. https://doi.org/10.3390/nu11081896.

    Article  CAS  PubMed Central  Google Scholar 

  156. Parkinson Study Group. Effect of deprenyl on the progression of disability in early Parkinson’s disease. N Engl J Med. 1989;321(20):1364–71. https://doi.org/10.1056/nejm198911163212004.

    Article  Google Scholar 

  157. Hantikainen E, Trolle Lagerros Y, Ye W, Serafini M, Adami HO, Bellocco R, et al. Dietary antioxidants and the risk of parkinson disease: the swedish national march cohort. Neurology. 2021;96(6):e895–903. https://doi.org/10.1212/wnl.0000000000011373.

    Article  CAS  PubMed  Google Scholar 

  158. Spencer ES, Pitcher T, Veron G, Hannam T, MacAskill M, Anderson T, et al. Positive association of ascorbate and inverse association of urate with cognitive function in people with parkinson’s disease. Antioxidants (Basel). 2020;9(10):906. https://doi.org/10.3390/antiox9100906.

    Article  CAS  PubMed Central  Google Scholar 

  159. Taher J, Naranian T, Poon YY, Merola A, Mestre T, Suchowersky O, et al. Vitamins and infusion of levodopa-carbidopa intestinal gel. Can J Neurol Sci. 2021. https://doi.org/10.1017/cjn.2021.78.

    Article  PubMed  Google Scholar 

  160. Park M, Ross GW, Petrovitch H, White LR, Masaki KH, Nelson JS, et al. Consumption of milk and calcium in midlife and the future risk of Parkinson disease. Neurology. 2005;64(6):1047–51. https://doi.org/10.1212/01.Wnl.0000154532.98495.Bf.

    Article  CAS  PubMed  Google Scholar 

  161. van Stiphout MAE, Marinus J, van Hilten JJ, Lobbezoo F, de Baat C. Oral health of parkinson’s disease patients: a case-control study. Parkinsons Dis. 2018;2018:9315285. https://doi.org/10.1155/2018/9315285.

    Article  PubMed  PubMed Central  Google Scholar 

  162. Fereshtehnejad SM, Skogar Ö, Lökk J. Evolution of orofacial symptoms and disease progression in idiopathic parkinson’s disease: longitudinal data from the jönköping parkinson registry. Parkinsons Dis. 2017;2017:7802819. https://doi.org/10.1155/2017/7802819.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Hanaoka A, Kashihara K. Increased frequencies of caries, periodontal disease and tooth loss in patients with Parkinson’s disease. J Clin Neurosci. 2009;16(10):1279–82. https://doi.org/10.1016/j.jocn.2008.12.027.

    Article  PubMed  Google Scholar 

  164. Pradeep AR, Singh SP, Martande SS, Raju AP, Rustagi T, Suke DK, et al. Clinical evaluation of the periodontal health condition and oral health awareness in Parkinson’s disease patients. Gerodontology. 2015;32(2):100–6. https://doi.org/10.1111/ger.12055.

    Article  PubMed  Google Scholar 

  165. Bakke M, Larsen SL, Lautrup C, Karlsborg M. Orofacial function and oral health in patients with Parkinson’s disease. Eur J Oral Sci. 2011;119(1):27–32. https://doi.org/10.1111/j.1600-0722.2010.00802.x.

    Article  PubMed  Google Scholar 

  166. Khan I. Falls: considerations for the dental surgeon. Br Dent J. 2020;228(7):509–14. https://doi.org/10.1038/s41415-020-1422-0.

    Article  PubMed  Google Scholar 

  167. Kennedy MA, Rosen S, Paulson GW, Jolly DE, Beck FM. Relationship of oral microflora with oral health status in Parkinson’s disease. Spec Care Dentist. 1994;14(4):164–8. https://doi.org/10.1111/j.1754-4505.1994.tb01125.x.

    Article  CAS  PubMed  Google Scholar 

  168. Mihaila D, Donegan J, Barns S, LaRocca D, Du Q, Zheng D, et al. The oral microbiome of early stage Parkinson’s disease and its relationship with functional measures of motor and non-motor function. PLoS ONE. 2019;14(6): e0218252. https://doi.org/10.1371/journal.pone.0218252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Pereira PAB, Aho VTE, Paulin L, Pekkonen E, Auvinen P, Scheperjans F. Oral and nasal microbiota in Parkinson’s disease. Parkinsonism Relat Disord. 2017;38:61–7. https://doi.org/10.1016/j.parkreldis.2017.02.026.

    Article  PubMed  Google Scholar 

  170. Onofrj M, Bonanni L, Cossu G, Manca D, Stocchi F, Thomas A. Emergencies in parkinsonism: akinetic crisis, life-threatening dyskinesias, and polyneuropathy during L-Dopa gel treatment. Parkinsonism Relat Disord. 2009;15(Suppl 3):S233-6. https://doi.org/10.1016/s1353-8020(09)70821-1.

    Article  PubMed  Google Scholar 

  171. Takubo H, Harada T, Hashimoto T, Inaba Y, Kanazawa I, Kuno S, Mizuno Y, Mizuta E, Murata M, Nagatsu T, Nakamura S, Yanagisawa N, Narabayashi H. A collaborative study on the malignant syndrome in Parkinson’s disease and related disorders. Parkinsonism Relat Disord. 2003;9(Suppl 1):S31-41. https://doi.org/10.1016/s1353-8020(02)00122-0.

    Article  PubMed  Google Scholar 

  172. Brugger F, Erro R, Balint B, Kägi G, Barone P, Bhatia KP. Why is there motor deterioration in Parkinson’s disease during systemic infections-a hypothetical view. NPJ Parkinsons Dis. 2015;1:15014. https://doi.org/10.1038/npjparkd.2015.14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Adams B, Nunes JM, Page MJ, Roberts T, Carr J, Nell TA, Kell DB, Pretorius E. parkinson’s disease: a systemic inflammatory disease accompanied by bacterial inflammagens. Front Aging Neurosci. 2019;11:210. https://doi.org/10.3389/fnagi.2019.00210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Kaur T, Uppoor A, Naik D. Parkinson’s disease and periodontitis—the missing link? A review. Gerodontology. 2016;33(4):434–8. https://doi.org/10.1111/ger.12188.

    Article  PubMed  Google Scholar 

  175. Kageyama T, Nakamura M, Matsuo A, Yamasaki Y, Takakura Y, Hashida M, Kanai Y, Naito M, Tsuruo T, Minato N, Shimohama S. The 4F2hc/LAT1 complex transports L-DOPA across the blood-brain barrier. Brain Res. 2000;879(1–2):115–21. https://doi.org/10.1016/s0006-8993(00)02758-x.

    Article  CAS  PubMed  Google Scholar 

  176. Lopez-Ramirez MA, Male DK, Wang C, Sharrack B, Wu D, Romero IA. Cytokine-induced changes in the gene expression profile of a human cerebral microvascular endothelial cell-line, hCMEC/D3. Fluids Barriers CNS. 2013;10(1):27. https://doi.org/10.1186/2045-8118-10-27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Batista LM, de Oliveira P, Magalhaes MT, Bastos WB, Oral PL. Hygiene in patients with Parkinson’s disease. R I Med J. 2015;98(11):35–7.

    Google Scholar 

  178. DeBowes SL, Tolle SL, Bruhn AM. Parkinson’s disease: considerations for dental hygienists. Int J Dent Hyg. 2013;11(1):15–21. https://doi.org/10.1111/j.1601-5037.2012.00548.x.

    Article  CAS  PubMed  Google Scholar 

  179. Al-Omari FA, Al Moaleem MM, Al-Qahtani SS, Al Garni AS, Sadatullah S, Luqman M. Oral rehabilitation of Parkinson’s disease patient: a review and case report. Case Rep Dent. 2014;2014: 432475. https://doi.org/10.1155/2014/432475.

    Article  PubMed  PubMed Central  Google Scholar 

  180. Rozas NS, Sadowsky JM, Jones DJ, Jeter CB. Incorporating oral health into interprofessional care teams for patients with Parkinson’s disease. Parkinsonism Relat Disord. 2017;43:9–14. https://doi.org/10.1016/j.parkreldis.2017.07.012.

    Article  PubMed  Google Scholar 

  181. Sturrock A, Cussons H, Jones C, Woodcock C, Bird L. Oral health promotion in the community pharmacy: an evaluation of a pilot oral health promotion intervention. Br Dent J. 2017;223(7):521–5. https://doi.org/10.1038/sj.bdj.2017.784.

    Article  CAS  PubMed  Google Scholar 

  182. Sturrock A, Preshaw PM, Hayes C, Wilkes S. “We do not seem to engage with dentists”: a qualitative study of primary healthcare staff and patients in the North East of England on the role of pharmacists in oral healthcare. BMJ Open. 2020;10(2): e032261. https://doi.org/10.1136/bmjopen-2019-032261.

    Article  PubMed  PubMed Central  Google Scholar 

  183. Gosnell R, Lazear J, Hemphill JC, Dotson D. Development of guidelines for improving oral health in individuals with Parkinson’s disease. Gerodontology. 2019;36(3):229–35. https://doi.org/10.1111/ger.12401.

    Article  PubMed  Google Scholar 

  184. Bagheri H, Damase-Michel C, Lapeyre-Mestre M, Cismondo S, O’Connell D, Senard JM, Rascol O, Montastruc JL. A study of salivary secretion in Parkinson’s disease. Clin Neuropharmacol. 1999;22(4):213–5.

    CAS  PubMed  Google Scholar 

  185. Karakoc M, Yon MI, Cakmakli GY, Ulusoy EK, Gulunay A, Oztekin N, Ak F. Pathophysiology underlying drooling in Parkinson’s disease: oropharyngeal bradykinesia. Neurol Sci. 2016;37(12):1987–91. https://doi.org/10.1007/s10072-016-2708-5.

    Article  PubMed  Google Scholar 

  186. Kalf JG, de Swart BJ, Borm GF, Bloem BR, Munneke M. Prevalence and definition of drooling in Parkinson’s disease: a systematic review. J Neurol. 2009;256(9):1391–6. https://doi.org/10.1007/s00415-009-5098-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Scully C, Limeres J, Gleeson M, Tomás I, Diz P. Drooling. J Oral Pathol Med. 2009;38(4):321–7. https://doi.org/10.1111/j.1600-0714.2008.00727.x.

    Article  PubMed  Google Scholar 

  188. Rajaei A, Ashtari F, Azargoon SA, Chitsaz A, Nilforoush MH, Taheri M, Sadeghi S. The association between saliva control, silent saliva penetration, aspiration, and videofluoroscopic findings in Parkinson’s disease patients. Adv Biomed Res. 2015;4:108. https://doi.org/10.4103/2277-9175.157815.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Akbar U, Dham B, He Y, Hack N, Wu S, Troche M, Tighe P, Nelson E, Friedman JH, Okun MS. Incidence and mortality trends of aspiration pneumonia in Parkinson’s disease in the United States, 1979–2010. Parkinsonism Relat Disord. 2015;21(9):1082–6. https://doi.org/10.1016/j.parkreldis.2015.06.020.

    Article  PubMed  Google Scholar 

  190. Marks L, Turner K, O’Sullivan J, Deighton B, Lees A. Drooling in Parkinson’s disease: a novel speech and language therapy intervention. Int J Lang Commun Disord. 2001;36(Suppl):282–7. https://doi.org/10.3109/13682820109177898.

    Article  PubMed  Google Scholar 

  191. Varley LP, Denieffe S, O’Gorman C, Murphy A, Gooney M. A systematic review of noninvasive and invasive sialorrhoea management. J Clin Nurs. 2019;28(23–24):4190–206. https://doi.org/10.1111/jocn.15009.

    Article  PubMed  Google Scholar 

  192. McGeachan AJ, McDermott CJ. Management of oral secretions in neurological disease. Pract Neurol. 2017;17(2):96–103. https://doi.org/10.1136/practneurol-2016-001515.

    Article  PubMed  Google Scholar 

  193. South AR, Somers SM, Jog MS. Gum chewing improves swallow frequency and latency in Parkinson patients: a preliminary study. Neurology. 2010;74(15):1198–202. https://doi.org/10.1212/WNL.0b013e3181d9002b.

    Article  PubMed  Google Scholar 

  194. Van der Burg JJ, Didden R, Jongerius PH, Rotteveel JJ. Behavioral treatment of drooling: a methodological critique of the literature with clinical guidelines and suggestions for future research. Behav Modif. 2007;31(5):573–94. https://doi.org/10.1177/0145445506298723.

    Article  PubMed  Google Scholar 

  195. Crispo JA, Willis AW, Thibault DP, Fortin Y, Hays HD, McNair DS, Bjerre LM, Kohen DE, Perez-Lloret S, Mattison DR, Krewski D. Associations between anticholinergic burden and adverse health outcomes in Parkinson disease. PLoS ONE. 2016;11(3): e0150621. https://doi.org/10.1371/journal.pone.0150621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Arbouw ME, Movig KL, Koopmann M, Poels PJ, Guchelaar HJ, Egberts TC, Neef C, van Vugt JP. Glycopyrrolate for sialorrhea in Parkinson disease: a randomized, double-blind, crossover trial. Neurology. 2010;74(15):1203–7. https://doi.org/10.1212/WNL.0b013e3181d8c1b7.

    Article  CAS  PubMed  Google Scholar 

  197. Mestre TA, Freitas E, Basndwah A, Lopez MR, de Oliveira LM, Al-Shorafat DM, Zhang T, Lui JP, Grimes D, Fox SH. Glycopyrrolate improves disability from sialorrhea in parkinson’s disease: a 12-week controlled trial. Mov Disord. 2020;35(12):2319–23. https://doi.org/10.1002/mds.28196.

    Article  CAS  PubMed  Google Scholar 

  198. Tessier P, Antonello C. Clozapine and sialorrhea: update. J Psychiatry Neurosci. 2001;26(3):253.

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Comley C, Galletly C, Ash D. Use of atropine eye drops for clozapine induced hypersalivation. Aust N Z J Psychiatry. 2000;34(6):1033–4. https://doi.org/10.1177/000486740003400102.

    Article  CAS  PubMed  Google Scholar 

  200. Hyson HC, Johnson AM, Jog MS. Sublingual atropine for sialorrhea secondary to parkinsonism: a pilot study. Mov Disord. 2002;17(6):1318–20. https://doi.org/10.1002/mds.10276.

    Article  PubMed  Google Scholar 

  201. Thomsen TR, Galpern WR, Asante A, Arenovich T, Fox SH. Ipratropium bromide spray as treatment for sialorrhea in Parkinson’s disease. Mov Disord. 2007;22(15):2268–73. https://doi.org/10.1002/mds.21730.

    Article  PubMed  Google Scholar 

  202. Pal PK, Calne DB, Calne S, Tsui JK. Botulinum toxin A as treatment for drooling saliva in PD. Neurology. 2000;54(1):244–7. https://doi.org/10.1212/wnl.54.1.244.

    Article  CAS  PubMed  Google Scholar 

  203. Ondo WG, Hunter C, Moore W. A double-blind placebo-controlled trial of botulinum toxin B for sialorrhea in Parkinson’s disease. Neurology. 2004;62(1):37–40. https://doi.org/10.1212/01.wnl.0000101713.81253.4c.

    Article  CAS  PubMed  Google Scholar 

  204. Jost WH, Friedman A, Michel O, Oehlwein C, Slawek J, Bogucki A, Ochudlo S, Banach M, Pagan F, Flatau-Baqué B, Csikós J, Cairney CJ, Blitzer A. SIAXI: Placebo-controlled, randomized, double-blind study of incobotulinumtoxinA for sialorrhea. Neurology. 2019;92(17):e1982–91. https://doi.org/10.1212/wnl.0000000000007368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Reid SM, Johnson HM, Reddihough DS. The Drooling Impact Scale: a measure of the impact of drooling in children with developmental disabilities. Dev Med Child Neurol. 2010;52(2):e23-8. https://doi.org/10.1111/j.1469-8749.2009.03519.x.

    Article  PubMed  Google Scholar 

  206. Isaacson SH, Ondo W, Jackson CE, Trosch RM, Molho E, Pagan F, Lew M, Dashtipour K, Clinch T, Espay AJ. Safety and efficacy of rimabotulinumtoxin B for treatment of sialorrhea in adults: a randomized clinical trial. JAMA Neurol. 2020;77(4):461–9. https://doi.org/10.1001/jamaneurol.2019.4565.

    Article  PubMed  PubMed Central  Google Scholar 

  207. Suttrup I, Warnecke T. Dysphagia in Parkinson’s disease. Dysphagia. 2016;31(1):24–32. https://doi.org/10.1007/s00455-015-9671-9.

    Article  PubMed  Google Scholar 

  208. Patel B, Legacy J, Hegland KW, Okun MS, Herndon NE. A comprehensive review of the diagnosis and treatment of Parkinson’s disease dysphagia and aspiration. Expert Rev Gastroenterol Hepatol. 2020;14(6):411–24. https://doi.org/10.1080/17474124.2020.1769475.

    Article  CAS  PubMed  Google Scholar 

  209. Simons JA. Swallowing dysfunctions in parkinson’s disease. Int Rev Neurobiol. 2017;134:1207–38. https://doi.org/10.1016/bs.irn.2017.05.026.

    Article  PubMed  Google Scholar 

  210. Cereda E, Cilia R, Klersy C, Canesi M, Zecchinelli AL, Mariani CB, Tesei S, Sacilotto G, Meucci N, Zini M, Isaias IU, Cassani E, Goldwurm S, Barichella M, Pezzoli G. Swallowing disturbances in Parkinson’s disease: a multivariate analysis of contributing factors. Parkinsonism Relat Disord. 2014;20(12):1382–7. https://doi.org/10.1016/j.parkreldis.2014.09.031.

    Article  PubMed  Google Scholar 

  211. Umemoto G, Furuya H. Management of dysphagia in patients with parkinson’s disease and related disorders. Intern Med. 2020;59(1):7–14. https://doi.org/10.2169/internalmedicine.2373-18.

    Article  PubMed  Google Scholar 

  212. Claus I, Muhle P, Suttrup J, Labeit B, Suntrup-Krueger S, Dziewas R, Warnecke T. Predictors of pharyngeal dysphagia in patients with parkinson’s disease. J Parkinsons Dis. 2020;10(4):1727–35. https://doi.org/10.3233/jpd-202081.

    Article  CAS  PubMed  Google Scholar 

  213. van Hooren MR, Baijens LW, Voskuilen S, Oosterloo M, Kremer B. Treatment effects for dysphagia in Parkinson’s disease: a systematic review. Parkinsonism Relat Disord. 2014;20(8):800–7. https://doi.org/10.1016/j.parkreldis.2014.03.026.

    Article  PubMed  Google Scholar 

  214. McHorney CA, Bricker DE, Kramer AE, Rosenbek JC, Robbins J, Chignell KA, Logemann JA, Clarke C. The SWAL-QOL outcomes tool for oropharyngeal dysphagia in adults: I. Conceptual foundation and item development. Dysphagia. 2000;15(3):115–21. https://doi.org/10.1007/s004550010012.

    Article  CAS  PubMed  Google Scholar 

  215. Martin-Harris B, Jones B. The videofluorographic swallowing study. Phys Med Rehabil Clin N Am. 2008;19(4):769–85. https://doi.org/10.1016/j.pmr.2008.06.004.

    Article  PubMed  PubMed Central  Google Scholar 

  216. Langmore SE. History of fiberoptic endoscopic evaluation of swallowing for evaluation and management of pharyngeal dysphagia: changes over the years. Dysphagia. 2017;32(1):27–38. https://doi.org/10.1007/s00455-016-9775-x.

    Article  PubMed  Google Scholar 

  217. Karen FL, Toledo IPD, Lucia FM. Dysphagia in Parkinson’s disease: prevalence, impact and management challenges. J Otolaryngol ENT Res. 2017;6:5.

    Google Scholar 

  218. Troche MS, Sapienza CM, Rosenbek JC. Effects of bolus consistency on timing and safety of swallow in patients with Parkinson’s disease. Dysphagia. 2008;23(1):26–32. https://doi.org/10.1007/s00455-007-9090-7.

    Article  PubMed  Google Scholar 

  219. Logemann JA, Gensler G, Robbins J, Lindblad AS, Brandt D, Hind JA, Kosek S, Dikeman K, Kazandjian M, Gramigna GD, Lundy D, McGarvey-Toler S, Miller Gardner PJ. A randomized study of three interventions for aspiration of thin liquids in patients with dementia or Parkinson’s disease. J Speech Lang Hear Res. 2008;51(1):173–83. https://doi.org/10.1044/1092-4388(2008/013).

    Article  PubMed  Google Scholar 

  220. Felix VN, Corrêa SM, Soares RJ. A therapeutic maneuver for oropharyngeal dysphagia in patients with Parkinson’s disease. Clinics (Sao Paulo). 2008;63(5):661–6. https://doi.org/10.1590/s1807-59322008000500015.

    Article  Google Scholar 

  221. El Sharkawi A, Ramig L, Logemann JA, Pauloski BR, Rademaker AW, Smith CH, Pawlas A, Baum S, Werner C. Swallowing and voice effects of Lee Silverman Voice Treatment (LSVT): a pilot study. J Neurol Neurosurg Psychiatry. 2002;72(1):31–6. https://doi.org/10.1136/jnnp.72.1.31.

    Article  PubMed  PubMed Central  Google Scholar 

  222. Lee MA, Prentice WM, Hildreth AJ, Walker RW. Measuring symptom load in Idiopathic Parkinson’s disease. Parkinsonism Relat Disord. 2007;13(5):284–9. https://doi.org/10.1016/j.parkreldis.2006.11.009.

    Article  CAS  PubMed  Google Scholar 

  223. Hindmarsh J, Lee M. The use of quetiapine for the management of nausea and vomiting in idiopathic parkinson’s disease. J Palliat Care. 2021. https://doi.org/10.1177/08258597211013952.

    Article  PubMed  Google Scholar 

  224. Kurin M, Bielefeldt K, Levinthal DJ. Prevalence of nausea and vomiting in adults using ropinirole: a systematic review and meta-analysis. Dig Dis Sci. 2018;63(3):687–93. https://doi.org/10.1007/s10620-018-4937-3.

    Article  CAS  PubMed  Google Scholar 

  225. Pfeiffer RF, Isaacson SH, Pahwa R. Clinical implications of gastric complications on levodopa treatment in Parkinson’s disease. Parkinsonism Relat Disord. 2020;76:63–71. https://doi.org/10.1016/j.parkreldis.2020.05.001.

    Article  PubMed  Google Scholar 

  226. Lolekha P, Sriphanom T, Vilaichone RK. Helicobacter pylori eradication improves motor fluctuations in advanced Parkinson’s disease patients: a prospective cohort study (HP-PD trial). PLoS ONE. 2021;16(5): e0251042. https://doi.org/10.1371/journal.pone.0251042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Cloud LJ, Greene JG. Gastrointestinal features of Parkinson’s disease. Curr Neurol Neurosci Rep. 2011;11(4):379–84. https://doi.org/10.1007/s11910-011-0204-0.

    Article  PubMed  Google Scholar 

  228. Legge J, Fleming N, Cloud LJ. Gastrointestinal care of the parkinson patient. Clin Geriatr Med. 2020;36(1):81–92. https://doi.org/10.1016/j.cger.2019.09.003.

    Article  PubMed  Google Scholar 

  229. Hindmarsh J, Hindmarsh S, Lee M, Telford R. The combination of levomepromazine (methotrimeprazine) and rotigotine enables the safe and effective management of refractory nausea and vomiting in a patient with idiopathic Parkinson’s disease. Palliat Med. 2019;33(1):109–13. https://doi.org/10.1177/0269216318809569.

    Article  PubMed  Google Scholar 

  230. Buffery PJ, Strother RM. Domperidone safety: a mini-review of the science of QT prolongation and clinical implications of recent global regulatory recommendations. N Z Med J. 2015;128(1416):66–74.

    PubMed  Google Scholar 

  231. Chedid V, Camilleri M. Relamorelin for the treatment of gastrointestinal motility disorders. Expert Opin Investig Drugs. 2017;26(10):1189–97. https://doi.org/10.1080/13543784.2017.1373088.

    Article  CAS  PubMed  Google Scholar 

  232. Lembo A, Camilleri M, McCallum R, Sastre R, Breton C, Spence S, White J, Currie M, Gottesdiener K, Stoner E. Relamorelin reduces vomiting frequency and severity and accelerates gastric emptying in adults with diabetic gastroparesis. Gastroenterology. 2016;151(1):87-96.e6. https://doi.org/10.1053/j.gastro.2016.03.038.

    Article  CAS  PubMed  Google Scholar 

  233. Camilleri M, McCallum RW, Tack J, Spence SC, Gottesdiener K, Fiedorek FT. Efficacy and safety of relamorelin in diabetics with symptoms of gastroparesis: a randomized. Placebo-Controlled Study. Gastroenterology. 2017;153(5):1240-1250.e2. https://doi.org/10.1053/j.gastro.2017.07.035.

    Article  CAS  PubMed  Google Scholar 

  234. Quigley EM. Prokinetics in the management of functional gastrointestinal disorders. J Neurogastroenterol Motil. 2015;21(3):330–6. https://doi.org/10.5056/jnm15094.

    Article  PubMed  PubMed Central  Google Scholar 

  235. Asai H, Udaka F, Hirano M, Minami T, Oda M, Kubori T, Nishinaka K, Kameyama M, Ueno S. Increased gastric motility during 5-HT4 agonist therapy reduces response fluctuations in Parkinson’s disease. Parkinsonism Relat Disord. 2005;11(8):499–502. https://doi.org/10.1016/j.parkreldis.2005.06.007.

    Article  PubMed  Google Scholar 

  236. De Rui M, Inelmen EM, Trevisan C, Pigozzo S, Manzato E, Sergi G. Parkinson’s disease and the non-motor symptoms: hyposmia, weight loss, osteosarcopenia. Aging Clin Exp Res. 2020;32(7):1211–8. https://doi.org/10.1007/s40520-020-01470-x.

    Article  PubMed  Google Scholar 

  237. Abbott RA, Cox M, Markus H, Tomkins A. Diet, body size and micronutrient status in Parkinson’s disease. Eur J Clin Nutr. 1992;46(12):879–84.

    CAS  PubMed  Google Scholar 

  238. Kashihara K. Weight loss in Parkinson’s disease. J Neurol. 2006;253(7):38–41. https://doi.org/10.1007/s00415-006-7009-0.

    Article  Google Scholar 

  239. van der Marck MA, Dicke HC, Uc EY, Kentin ZH, Borm GF, Bloem BR, Overeem S, Munneke M. Body mass index in Parkinson’s disease: a meta-analysis. Parkinsonism Relat Disord. 2012;18(3):263–7. https://doi.org/10.1016/j.parkreldis.2011.10.016.

    Article  PubMed  Google Scholar 

  240. Fink HA, Kuskowski MA, Orwoll ES, Cauley JA, Ensrud KE. Association between Parkinson’s disease and low bone density and falls in older men: the osteoporotic fractures in men study. J Am Geriatr Soc. 2005;53(9):1559–64. https://doi.org/10.1111/j.1532-5415.2005.53464.x.

    Article  PubMed  Google Scholar 

  241. Guttman M, Slaughter PM, Theriault ME, DeBoer DP, Naylor CD. Parkinsonism in Ontario: comorbidity associated with hospitalization in a large cohort. Mov Disord. 2004;19(1):49–53. https://doi.org/10.1002/mds.10648.

    Article  PubMed  Google Scholar 

  242. Wills AM, Pérez A, Wang J, Su X, Morgan J, Rajan SS, Leehey MA, Pontone GM, Chou KL, Umeh C, Mari Z, Boyd J. Association between change in body mass index, unified Parkinson’s disease rating scale scores, and survival among persons with parkinson disease: secondary analysis of longitudinal data from NINDS exploratory trials in parkinson disease long-term study 1. JAMA Neurol. 2016;73(3):321–8. https://doi.org/10.1001/jamaneurol.2015.4265.

    Article  PubMed  PubMed Central  Google Scholar 

  243. Kim HJ, Oh ES, Lee JH, Moon JS, Oh JE, Shin JW, Lee KJ, Baek IC, Jeong SH, Song HJ, Sohn EH, Lee AY. Relationship between changes of body mass index (BMI) and cognitive decline in Parkinson’s disease (PD). Arch Gerontol Geriatr. 2012;55(1):70–2. https://doi.org/10.1016/j.archger.2011.06.022.

    Article  PubMed  Google Scholar 

  244. Zappia M, Crescibene L, Arabia G, Nicoletti G, Bagalà A, Bastone L, Caracciolo M, Bonavita S, Di Costanzo A, Scornaienchi M, Gambardella A, Quattrone A. Body weight influences pharmacokinetics of levodopa in Parkinson’s disease. Clin Neuropharmacol. 2002;25(2):79–82. https://doi.org/10.1097/00002826-200203000-00004.

    Article  CAS  PubMed  Google Scholar 

  245. Nakamura T, Suzuki M, Ueda M, Hirayama M, Katsuno M. Lower body mass index is associated with orthostatic hypotension in Parkinson’s disease. J Neurol Sci. 2017;372:14–8. https://doi.org/10.1016/j.jns.2016.11.027.

    Article  PubMed  Google Scholar 

  246. Doty RL. Olfactory dysfunction in Parkinson disease. Nat Rev Neurol. 2012;8(6):329–39. https://doi.org/10.1038/nrneurol.2012.80.

    Article  CAS  PubMed  Google Scholar 

  247. Haehner A, Tosch C, Wolz M, Klingelhoefer L, Fauser M, Storch A, Reichmann H, Hummel T. Olfactory training in patients with Parkinson’s disease. PLoS ONE. 2013;8(4): e61680. https://doi.org/10.1371/journal.pone.0061680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Pisano M, Hilas O. Zinc and taste disturbances in older adults: a review of the literature. Consult Pharm. 2016;31(5):267–70. https://doi.org/10.4140/TCP.n.2016.267.

    Article  PubMed  Google Scholar 

  249. Brewer GJ, Kanzer SH, Zimmerman EA, Molho ES, Celmins DF, Heckman SM, Dick R. Subclinical zinc deficiency in Alzheimer’s disease and Parkinson’s disease. Am J Alzheimers Dis Other Demen. 2010;25(7):572–5. https://doi.org/10.1177/1533317510382283.

    Article  PubMed  Google Scholar 

  250. Yagi T, Asakawa A, Ueda H, Ikeda S, Miyawaki S, Inui A. The role of zinc in the treatment of taste disorders. Recent Pat Food Nutr Agric. 2013;5(1):44–51. https://doi.org/10.2174/2212798411305010007.

    Article  CAS  PubMed  Google Scholar 

  251. Emre M, Ford PJ, Bilgiç B, Uç EY. Cognitive impairment and dementia in Parkinson’s disease: practical issues and management. Mov Disord. 2014;29(5):663–72. https://doi.org/10.1002/mds.25870.

    Article  PubMed  Google Scholar 

  252. Sheard JM, Ash S, Mellick GD, Silburn PA, Kerr GK. Markers of disease severity are associated with malnutrition in Parkinson’s disease. PLoS ONE. 2013;8(3): e57986. https://doi.org/10.1371/journal.pone.0057986.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Fiszer U, Michałowska M, Baranowska B, Wolińska-Witort E, Jeske W, Jethon M, et al. Leptin and ghrelin concentrations and weight loss in Parkinson’s disease. Acta Neurol Scand. 2010;121(4):230–6. https://doi.org/10.1111/j.1600-0404.2009.01185.x.

    Article  CAS  PubMed  Google Scholar 

  254. Kishi T, Elmquist JK. Body weight is regulated by the brain: a link between feeding and emotion. Mol Psychiatry. 2005;10(2):132–46. https://doi.org/10.1038/sj.mp.4001638.

    Article  CAS  PubMed  Google Scholar 

  255. Djamshidian A, Friedman JH. Anxiety and depression in Parkinson’s disease. Curr Treat Options Neurol. 2014;16(4):285. https://doi.org/10.1007/s11940-014-0285-6.

    Article  PubMed  Google Scholar 

  256. Rieu I, Derost P, Ulla M, Marques A, Debilly B, De Chazeron I, et al. Body weight gain and deep brain stimulation. J Neurol Sci. 2011;310(1–2):267–70. https://doi.org/10.1016/j.jns.2011.06.055.

    Article  PubMed  Google Scholar 

  257. Georgescu D, Ancusa OE, Georgescu LA, Ionita I, Reisz D. Nonmotor gastrointestinal disorders in older patients with Parkinson’s disease: is there hope? Clin Interv Aging. 2016;11:1601–8. https://doi.org/10.2147/cia.S106284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Barboza JL, Okun MS, Moshiree B. The treatment of gastroparesis, constipation and small intestinal bacterial overgrowth syndrome in patients with Parkinson’s disease. Expert Opin Pharmacother. 2015;16(16):2449–64. https://doi.org/10.1517/14656566.2015.1086747.

    Article  CAS  PubMed  Google Scholar 

  259. Leta V, Urso D, Batzu L, Weintraub D, Titova N, Aarsland D, et al. Constipation is associated with development of cognitive impairment in de novo Parkinson’s disease: a longitudinal analysis of two international cohorts. J Parkinsons Dis. 2021;11(3):1209–19. https://doi.org/10.3233/jpd-212570.

    Article  CAS  PubMed  Google Scholar 

  260. Tucker RM, Ryan S, Hayee BH, Bjarnason I, Augustin AD, Umamahesan C, et al. Distinctive pathophysiology underlying constipation in parkinson’s disease: implications for cognitive inefficiency. J Clin Med. 2020;9(6):1916. https://doi.org/10.3390/jcm9061916.

    Article  PubMed Central  Google Scholar 

  261. Sheng MZ, Fang TC, Chen YH, Chang MH, Yang CP, Lin CH. Is either anosmia or constipation associated with cognitive dysfunction in Parkinson’s disease? PLoS ONE. 2021;16(6): e0252451. https://doi.org/10.1371/journal.pone.0252451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Mearin F, Lacy BE, Chang L, Chey WD, Lembo AJ, Simren M, et al. Bowel disorders. Gastroenterology. 2016;150(6):1393–407. https://doi.org/10.1053/j.gastro.2016.02.031.

    Article  Google Scholar 

  263. Gan J, Wan Y, Shi J, Zhou M, Lou Z, Liu Z. A survey of subjective constipation in Parkinson’s disease patients in shanghai and literature review. BMC Neurol. 2018;18(1):29. https://doi.org/10.1186/s12883-018-1034-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Knudsen K, Krogh K, Østergaard K, Borghammer P. Constipation in parkinson’s disease: subjective symptoms, objective markers, and new perspectives. Mov Disord. 2017;32(1):94–105. https://doi.org/10.1002/mds.26866.

    Article  PubMed  Google Scholar 

  265. Mishima T, Fukae J, Fujioka S, Inoue K, Tsuboi Y. The prevalence of constipation and irritable Bowel syndrome in Parkinson’s disease patients according to Rome III diagnostic criteria. J Parkinsons Dis. 2017;7(2):353–7. https://doi.org/10.3233/jpd-160982.

    Article  PubMed  PubMed Central  Google Scholar 

  266. Savica R, Carlin JM, Grossardt BR, Bower JH, Ahlskog JE, Maraganore DM, et al. Medical records documentation of constipation preceding Parkinson disease: a case-control study. Neurology. 2009;73(21):1752–8. https://doi.org/10.1212/WNL.0b013e3181c34af5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Pellegrini C, Ippolito C, Segnani C, Dolfi A, Errede M, Virgintino D, et al. Pathological remodelling of colonic wall following dopaminergic nigrostriatal neurodegeneration. Neurobiol Dis. 2020;139: 104821. https://doi.org/10.1016/j.nbd.2020.104821.

    Article  CAS  PubMed  Google Scholar 

  268. Huizinga JD, Hussain A, Chen JH. Interstitial cells of Cajal and human colon motility in health and disease. Am J Physiol Gastrointest Liver Physiol. 2021;321(5):G52–575. https://doi.org/10.1152/ajpgi.00264.2021.

    Article  CAS  Google Scholar 

  269. Nyam DC, Pemberton JH, Ilstrup DM, Rath DM. Long-term results of surgery for chronic constipation. Dis Colon Rectum. 1997;40(3):273–9. https://doi.org/10.1007/bf02050415.

    Article  CAS  PubMed  Google Scholar 

  270. Bassotti G, Maggio D, Battaglia E, Giulietti O, Spinozzi F, Reboldi G, et al. Manometric investigation of anorectal function in early and late stage Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2000;68(6):768–70. https://doi.org/10.1136/jnnp.68.6.768.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Ashraf W, Pfeiffer RF, Park F, Lof J, Quigley EM. Constipation in Parkinson’s disease: objective assessment and response to psyllium. Mov Disord. 1997;12(6):946–51. https://doi.org/10.1002/mds.870120617.

    Article  CAS  PubMed  Google Scholar 

  272. Knudsen K, Haase AM, Fedorova TD, Bekker AC, Østergaard K, Krogh K, Borghammer P. Gastrointestinal transit time in Parkinson’s disease using a magnetic tracking system. J Parkinsons Dis. 2017;7(3):471–9. https://doi.org/10.3233/jpd-171131.

    Article  PubMed  Google Scholar 

  273. Sakakibara R, Odaka T, Uchiyama T, Asahina M, Yamaguchi K, Yamaguchi T, Yamanishi T, Hattori T. Colonic transit time and rectoanal videomanometry in Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2003;74(2):268–72. https://doi.org/10.1136/jnnp.74.2.268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Chung KA, Pfeiffer RF. Gastrointestinal dysfunction in the synucleinopathies. Clin Auton Res. 2021;31(1):77–99. https://doi.org/10.1007/s10286-020-00745-7.

    Article  PubMed  Google Scholar 

  275. Berg D, Postuma RB, Adler CH, Bloem BR, Chan P, Dubois B, Gasser T, Goetz CG, Halliday G, Joseph L, Lang AE, Liepelt-Scarfone I, Litvan I, Marek K, Obeso J, Oertel W, Olanow CW, Poewe W, Stern M, Deuschl G. MDS research criteria for prodromal Parkinson’s disease. Mov Disord. 2015;30(12):1600–11. https://doi.org/10.1002/mds.26431.

    Article  PubMed  Google Scholar 

  276. Pfeiffer RF. Gastrointestinal dysfunction in Parkinson’s disease. Parkinsonism Relat Disord. 2011;17(1):10–5. https://doi.org/10.1016/j.parkreldis.2010.08.003.

    Article  PubMed  Google Scholar 

  277. Sun WM, Rao SS. Manometric assessment of anorectal function. Gastroenterol Clin North Am. 2001;30(1):15–32. https://doi.org/10.1016/s0889-8553(05)70165-5.

    Article  CAS  PubMed  Google Scholar 

  278. McKerracher PW. What is happening to cavity toilet and lining? Aust Dent J. 1978;23(3):247–51. https://doi.org/10.1111/j.1834-7819.1978.tb05175.x.

    Article  CAS  PubMed  Google Scholar 

  279. Edwards LL, Pfeiffer RF, Quigley EM, Hofman R, Balluff M. Gastrointestinal symptoms in Parkinson’s disease. Mov Disord. 1991;6(2):151–6. https://doi.org/10.1002/mds.870060211.

    Article  CAS  PubMed  Google Scholar 

  280. Cersosimo MG, Raina GB, Pecci C, Pellene A, Calandra CR, Gutiérrez C, Micheli FE, Benarroch EE. Gastrointestinal manifestations in Parkinson’s disease: prevalence and occurrence before motor symptoms. J Neurol. 2013;260(5):1332–8. https://doi.org/10.1007/s00415-012-6801-2.

    Article  CAS  PubMed  Google Scholar 

  281. Fehlow, P, Walther, F, Miosge, W. An increased incidence of megacolon in psychiatric and neurologic patients. Nervenarzt 1995;66(1):57–9. (Erhöhte Inzidenz des Megakolons bei psychiatrischen und neurologischen Patienten.)

  282. Edwards L, Quigley EM, Hofman R, Pfeiffer RF. Gastrointestinal symptoms in Parkinson disease: 18-month follow-up study. Mov Disord. 1993;8(1):83–6. https://doi.org/10.1002/mds.870080115.

    Article  CAS  PubMed  Google Scholar 

  283. Southwell BR, Clarke MC, Sutcliffe J, Hutson JM. Colonic transit studies: normal values for adults and children with comparison of radiological and scintigraphic methods. Pediatr Surg Int. 2009;25(7):559–72. https://doi.org/10.1007/s00383-009-2387-x.

    Article  PubMed  Google Scholar 

  284. Aburub A, Fischer M, Camilleri M, Semler JR, Fadda HM. Comparison of pH and motility of the small intestine of healthy subjects and patients with symptomatic constipation using the wireless motility capsule. Int J Pharm. 2018;544(1):158–64. https://doi.org/10.1016/j.ijpharm.2018.04.031.

    Article  CAS  PubMed  Google Scholar 

  285. Basilisco G, Bharucha AE. High-resolution anorectal manometry: An expensive hobby or worth every penny? Neurogastroenterol Motil. 2017;29:8. https://doi.org/10.1111/nmo.13125.

    Article  Google Scholar 

  286. Heinrich H, Misselwitz B. High-resolution anorectal manometry—new insights in the diagnostic assessment of functional anorectal disorders. Visc Med. 2018;34(2):134–9. https://doi.org/10.1159/000488611.

    Article  PubMed  PubMed Central  Google Scholar 

  287. Su A, Gandhy R, Barlow C, Triadafilopoulos G. Utility of high-resolution anorectal manometry and wireless motility capsule in the evaluation of patients with Parkinson’s disease and chronic constipation. BMJ Open Gastroenterol. 2016;3(1): e000118. https://doi.org/10.1136/bmjgast-2016-000118.

    Article  PubMed  PubMed Central  Google Scholar 

  288. Eichhorn TE, Oertel WH. Macrogol 3350/electrolyte improves constipation in Parkinson’s disease and multiple system atrophy. Mov Disord. 2001;16(6):1176–7. https://doi.org/10.1002/mds.1211.

    Article  CAS  PubMed  Google Scholar 

  289. Morgan JC, Sethi KD. Tegaserod in constipation associated with Parkinson disease. Clin Neuropharmacol. 2007;30(1):52–4. https://doi.org/10.1097/01.Wnf.0000240942.21499.97.

    Article  CAS  PubMed  Google Scholar 

  290. Omer A, Quigley EMM. An update on prucalopride in the treatment of chronic constipation. Therap Adv Gastroenterol. 2017;10(11):877–87. https://doi.org/10.1177/1756283x17734809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  291. Briejer MR, Bosmans JP, Van Daele P, Jurzak M, Heylen L, Leysen JE, Prins NH, Schuurkes JA. The in vitro pharmacological profile of prucalopride, a novel enterokinetic compound. Eur J Pharmacol. 2001;423(1):71–83. https://doi.org/10.1016/s0014-2999(01)01087-1.

    Article  CAS  PubMed  Google Scholar 

  292. Kessing BF, Smout AJ, Bennink RJ, Kraaijpoel N, Oors JM, Bredenoord AJ. Prucalopride decreases esophageal acid exposure and accelerates gastric emptying in healthy subjects. Neurogastroenterol Motil. 2014;26(8):1079–86. https://doi.org/10.1111/nmo.12359.

    Article  CAS  PubMed  Google Scholar 

  293. Bouras EP, Camilleri M, Burton DD, McKinzie S. Selective stimulation of colonic transit by the benzofuran 5HT4 agonist, prucalopride, in healthy humans. Gut. 1999;44(5):682–6. https://doi.org/10.1136/gut.44.5.682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  294. Bouras EP, Camilleri M, Burton DD, Thomforde G, McKinzie S, Zinsmeister AR. Prucalopride accelerates gastrointestinal and colonic transit in patients with constipation without a rectal evacuation disorder. Gastroenterology. 2001;120(2):354–60. https://doi.org/10.1053/gast.2001.21166.

    Article  CAS  PubMed  Google Scholar 

  295. Alsahafi M, Cramer P, Chatur N, Donnellan F. The effect of prucalopride on small bowel transit time in hospitalized patients undergoing capsule endoscopy. Can J Gastroenterol Hepatol. 2017;2017:2696947. https://doi.org/10.1155/2017/2696947.

    Article  PubMed  PubMed Central  Google Scholar 

  296. Sarosiek I, Bashashati M, Alvarez A, Hall M, Shankar N, Gomez Y, McCallum RW, Sarosiek J. Lubiprostone accelerates intestinal transit and alleviates small intestinal bacterial overgrowth in patients with chronic constipation. Am J Med Sci. 2016;352(3):231–8. https://doi.org/10.1016/j.amjms.2016.05.012.

    Article  PubMed  Google Scholar 

  297. Lee HJ, Boo SJ, Jung KW, Han S, Seo SY, Koo HS, Yoon IJ, Park SH, Yang DH, Kim KJ, Ye BD, Byeon JS, Yang SK, Kim JH, Myung SJ. Long-term efficacy of biofeedback therapy in patients with dyssynergic defecation: results of a median 44 months follow-up. Neurogastroenterol Motil. 2015;27(6):787–95. https://doi.org/10.1111/nmo.12552.

    Article  CAS  PubMed  Google Scholar 

  298. Albanese A, Brisinda G, Bentivoglio AR, Maria G. Treatment of outlet obstruction constipation in Parkinson’s disease with botulinum neurotoxin A. Am J Gastroenterol. 2003;98(6):1439–40. https://doi.org/10.1111/j.1572-0241.2003.07514.x.

    Article  CAS  PubMed  Google Scholar 

  299. Cadeddu F, Bentivoglio AR, Brandara F, Marniga G, Brisinda G, Maria G. Outlet type constipation in Parkinson’s disease: results of botulinum toxin treatment. Aliment Pharmacol Ther. 2005;22(10):997–1003. https://doi.org/10.1111/j.1365-2036.2005.02669.x.

    Article  CAS  PubMed  Google Scholar 

  300. Mills R, Bahroo L, Pagan F. An update on the use of botulinum toxin therapy in Parkinson’s disease. Curr Neurol Neurosci Rep. 2015;15(1):511. https://doi.org/10.1007/s11910-014-0511-3.

    Article  CAS  PubMed  Google Scholar 

  301. Emile SH, Elfeki HA, Elbanna HG, Youssef M, Thabet W, Abd El-Hamed TM, Said B, Lotfy A. Efficacy and safety of botulinum toxin in treatment of anismus: a systematic review. World J Gastrointest Pharmacol Ther. 2016;7(3):453–62. https://doi.org/10.4292/wjgpt.v7.i3.453.

    Article  PubMed  PubMed Central  Google Scholar 

  302. Rossi M, Merello M, Perez-Lloret S. Management of constipation in Parkinson’s disease. Expert Opin Pharmacother. 2015;16(4):547–57. https://doi.org/10.1517/14656566.2015.997211.

    Article  CAS  PubMed  Google Scholar 

  303. Richy FF, Pietri G, Moran KA, Senior E, Makaroff LE. Compliance with pharmacotherapy and direct healthcare costs in patients with Parkinson’s disease: a retrospective claims database analysis. Appl Health Econ Health Policy. 2013;11(4):395–406. https://doi.org/10.1007/s40258-013-0033-1.

    Article  PubMed  PubMed Central  Google Scholar 

  304. Galloway R, McGuire J. Determinants of compliance with iron supplementation: supplies, side effects, or psychology? Soc Sci Med. 1994;39(3):381–90. https://doi.org/10.1016/0277-9536(94)90135-x.

    Article  CAS  PubMed  Google Scholar 

  305. Tosin MHS, Stebbins GT, Goetz CG, Santana RF, Leite MAA, Oliveira B. Measuring medication adherence in parkinson’s disease: a systematic review of contributing components in rating scales. Mov Disord Clin Pract. 2020;7(6):607–15. https://doi.org/10.1002/mdc3.13006.

    Article  PubMed  PubMed Central  Google Scholar 

  306. Malek N, Grosset DG. Medication adherence in patients with Parkinson’s disease. CNS Drugs. 2015;29(1):47–53. https://doi.org/10.1007/s40263-014-0220-0.

    Article  CAS  PubMed  Google Scholar 

  307. Dewey RB Jr, Hutton JT, LeWitt PA, Factor SA. A randomized, double-blind, placebo-controlled trial of subcutaneously injected apomorphine for parkinsonian off-state events. Arch Neurol. 2001;58(9):1385–92. https://doi.org/10.1001/archneur.58.9.1385.

    Article  PubMed  Google Scholar 

  308. Willman C, Tadi P. Tolcapone. In: StatPearls, StatPearls Publishing. Treasure Island, FL: Copyright © 2021, StatPearls Publishing LLC. 2021.

  309. Auffret M, Meuric V, Boyer E, Bonnaure-Mallet M, Vérin M. Oral health disorders in parkinson’s disease: more than meets the eye. J Parkinsons Dis. 2021. https://doi.org/10.3233/jpd-212605.

    Article  PubMed  PubMed Central  Google Scholar 

  310. Xadago (safinamide) [prescribing information]. Rockville, MD August 2021, US WorldMeds. 2021.

  311. Azilect (rasagiline) [prescribing information]. Parsippany, NJ Teva Pharmaceuticals USA Inc. 2021.

  312. Chen JF, Cunha RA. The belated US FDA approval of the adenosine A(2A) receptor antagonist istradefylline for treatment of Parkinson’s disease. Purinergic Signal. 2020;16(2):167–74. https://doi.org/10.1007/s11302-020-09694-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  313. Emre M, Aarsland D, Albanese A, Byrne EJ, Deuschl G, De Deyn PP, Durif F, Kulisevsky J, van Laar T, Lees A, Poewe W, Robillard A, Rosa MM, Wolters E, Quarg P, Tekin S, Lane R. Rivastigmine for dementia associated with Parkinson’s disease. N Engl J Med. 2004;351(24):2509–18. https://doi.org/10.1056/NEJMoa041470.

    Article  CAS  PubMed  Google Scholar 

  314. Lefèvre G, Sedek G, Jhee SS, Leibowitz MT, Huang HL, Enz A, Maton S, Ereshefsky L, Pommier F, Schmidli H, Appel-Dingemanse S. Pharmacokinetics and pharmacodynamics of the novel daily rivastigmine transdermal patch compared with twice-daily capsules in Alzheimer’s disease patients. Clin Pharmacol Ther. 2008;83(1):106–14. https://doi.org/10.1038/sj.clpt.6100242.

    Article  CAS  PubMed  Google Scholar 

  315. Hughes A, Musher J, Thomas SK, Beusterien KM, Strunk B, Arcona S. Gastrointestinal adverse events in a general population sample of nursing home residents taking cholinesterase inhibitors. Consult Pharm. 2004;19(8):713–20. https://doi.org/10.4140/tcp.n.2004.713.

    Article  PubMed  Google Scholar 

  316. Sheffrin M, Miao Y, Boscardin WJ, Steinman MA. Weight loss associated with cholinesterase inhibitors in individuals with dementia in a national healthcare system. J Am Geriatr Soc. 2015;63(8):1512–8. https://doi.org/10.1111/jgs.13511.

    Article  PubMed  PubMed Central  Google Scholar 

  317. Soysal P, Isik AT, Stubbs B, Solmi M, Volpe M, Luchini C, D’Onofrio G, Pilotto A, Manzato E, Sergi G, Schofield P, Veronese N. Acetylcholinesterase inhibitors are associated with weight loss in older people with dementia: a systematic review and meta-analysis. J Neurol Neurosurg Psychiatry. 2016;87(12):1368–74. https://doi.org/10.1136/jnnp-2016-313660.

    Article  PubMed  Google Scholar 

  318. Aarsland D, Ballard C, Walker Z, Bostrom F, Alves G, Kossakowski K, Leroi I, Pozo-Rodriguez F, Minthon L, Londos E. Memantine in patients with Parkinson’s disease dementia or dementia with Lewy bodies: a double-blind, placebo-controlled, multicentre trial. Lancet Neurol. 2009;8(7):613–8. https://doi.org/10.1016/s1474-4422(09)70146-2.

    Article  CAS  PubMed  Google Scholar 

  319. Bunchorntavakul C, Reddy KR. Drug hepatotoxicity: newer agents. Clin Liver Dis. 2017;21(1):115–34. https://doi.org/10.1016/j.cld.2016.08.009.

    Article  PubMed  Google Scholar 

  320. Cardona X, Avila A, Castellanos P. Venlafaxine-associated hepatitis. Ann Intern Med. 2000;132(5):417. https://doi.org/10.7326/0003-4819-132-5-200003070-00016.

    Article  CAS  PubMed  Google Scholar 

  321. Detry O, Delwaide J, De Roover A, Hans MF, Delbouille MH, Monard J, Honoré P. Fulminant hepatic failure induced by venlafaxine and trazodone therapy: a case report. Transplant Proc. 2009;41(8):3435–6. https://doi.org/10.1016/j.transproceed.2009.09.022.

    Article  CAS  PubMed  Google Scholar 

  322. Sramek JJ, Hong WW, Hamid S, Nape B, Cutler NR. Meta-analysis of the safety and tolerability of two dose regimens of buspirone in patients with persistent anxiety. Depress Anxiety. 1999;9(3):131–4.

    Article  CAS  PubMed  Google Scholar 

  323. Mullish BH, Kabir MS, Thursz MR, Dhar A. Review article: depression and the use of antidepressants in patients with chronic liver disease or liver transplantation. Aliment Pharmacol Ther. 2014;40(8):880–92. https://doi.org/10.1111/apt.12925.

    Article  CAS  PubMed  Google Scholar 

  324. American Geriatrics Society 2019 Updated AGS Beers Criteria® for Potentially Inappropriate Medication Use in Older Adults. J Am Geriatr Soc 2019;67(4):674–694. https://doi.org/10.1111/jgs.15767

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Delaram Safarpour.

Ethics declarations

Funding

Not applicable.

Conflicts of interest

Kaveh Sharzehi reports no conflicts of interest. Delaram Safarpour has received compensation for advisory board participation from Abbvie and Boston Scientific; consultation fees from Abbott; and institutional grant support from the Parkinson Study Group. Ronald F. Pfeiffer is a member of the Data Safety Monitoring Board of Enterin Inc; Programmatic Panel Member of the Neurotoxin Exposure Treatment Parkinson’s Program, Congressionally Directed Medical Research Programs, Department of Defense; and receives royalties for books edited from CRC Press and Humana Press; podcast participation for Acorda; legal consulting for Henry & Beaver, LLP.

Author contributions

All authors contributed equally to the literature search, and manuscript writing and editing.

Availability of data and material

Not applicable.

Code availability

Not applicable.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safarpour, D., Sharzehi, K. & Pfeiffer, R.F. Gastrointestinal Dysfunction in Parkinson’s Disease. Drugs 82, 169–197 (2022). https://doi.org/10.1007/s40265-021-01664-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40265-021-01664-1

Navigation